Advertisement

Journal of Materials Science

, Volume 24, Issue 10, pp 3616–3620 | Cite as

Fatigue behaviour characterization of the fibre-matrix interface

  • R. A. LatourJr
  • J. Black
  • B. Miller
Review

Abstract

The fracture behaviour of FRP composite materials is significantly influenced by the behaviour of the fibre-matrix interfacial bond. Thus far interfacial bond mechanical characterization has been based upon the critical strength and critical fracture energy of debonding. Characterization of the fatigue behaviour of the interfacial debonding process, however, may be more valuable for composite design and fibre-matrix selection. A fracture mechanics model of interfacial bond fatigue based on the mode II strain energy release rate (GII) is presented. An expression forGII is derived for a single fibre in matrix cylinder model. By fitting the model to single fibre pull-out fatigue test data, fatigue crack propagation plots for specific fibre-matrix combinations can be drawn. These should prove useful for the development of fatigue resistant FRP composite materials.

Keywords

Fatigue Energy Release Rate Interfacial Bond Fatigue Behaviour Fatigue Crack Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. C. SHIH and L. J. EBERT,Comp. Sci. Tech. 28 (1987) 137.CrossRefGoogle Scholar
  2. 2.
    P. S. STEIF,J. Comp. Mater. 17 (1984) 153.Google Scholar
  3. 3.
    A. TAKAKU and R. G. C. ARRIDGE,J. Phys. D Appl. Phys. 6 (1973) 2038.CrossRefGoogle Scholar
  4. 4.
    M. J. FOLKES and W. K. WONG,Polymer 28 (1987) 1309.CrossRefGoogle Scholar
  5. 5.
    J. A. MANSON,Appl. Chem. 57 (1985) 1667.Google Scholar
  6. 6.
    D. DEW-HUGHES and J. L. WAY,Composites 4 (1973) 167.CrossRefGoogle Scholar
  7. 7.
    L. T. DRZAL,Sampe. J. 19 (1983) 7.Google Scholar
  8. 8.
    M. R. PIGGOTT, A. SANADI, P. S. CHUA and D. ANDISON, in “Composite Interfaces”, edited by S. H. Ishida and J. L. Koenig (Elsevier, New York, 1986) p. 109.Google Scholar
  9. 9.
    P. S. CHUA and M. R. PIGGOTT,Comp. Sci. Tech. 22 (1985) 33.Google Scholar
  10. 10.
    B. MILLER, P. MURI and L. REBENFELD, —ibid.28 (1987) 17.CrossRefGoogle Scholar
  11. 11.
    H. STANG,Serie R-Dan. Tek. Hojsk. Afd. Baerende Konstr. 205 (1985) 1.Google Scholar
  12. 12.
    H. STANG and S. P. SHAH,J. Mater. Sci. 21 (1986) 953.CrossRefGoogle Scholar
  13. 13.
    C. ATKINSON, J. AVILA, E. BETZ and R. E. SMELSER,J. Mech. Phys. Solids 30 (1982) 97.Google Scholar
  14. 14.
    P. S. CHUA and M. R. PIGGOTT,Comp. Sci. Tech. 22 (1985) 107.Google Scholar
  15. 15.
    S. MALL and W. S. JOHNSON, in “Composite Materials: Testing and Design (7th Conf.)”, ASTM STP 893 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1986) p. 322.Google Scholar
  16. 16.
    P. A. GRADIN and J. BACKLUND, in “Advances in Composite Materials”, ICCM3, 3rd International Conference on Composite Materials, Vol. 1, edited by A. R. Bunsell, C. Bathias, A. Martrenchar, D. Menkes, and G. Verchery (Pergamon, New York, 1980) p. 162.Google Scholar
  17. 17.
    D. K. FELBECK and A. G. ATKINS, “Strength and Fracture of Engineering Solids” (Prentice-Hall, Englewood Cliffs, New Jersey, 1984) p. 332.Google Scholar
  18. 18.
    D. BROEK, “Elementary Engineering Fracture Mechanics”, 3rd Revised Edn (Martinus Nijhoff, Boston, Massachusetts, 1982) p. 115.Google Scholar
  19. 19.
    P. LAWRENCE,J. Mater. Sci. 7 (1972) 1.CrossRefGoogle Scholar
  20. 20.
    A. KELLY, “Strong Solids” (Oxford University Press, New York, 1966) p. 125.Google Scholar
  21. 21.
    M. R. PIGGOTT,Comp. Sci. Tech. 30 (1987) 295.Google Scholar
  22. 22.
    J. K. WELLS and P. W. R. BEAUMONT,J. Mater. Sci. 20 (1985) 1275.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1989

Authors and Affiliations

  • R. A. LatourJr
    • 1
  • J. Black
    • 1
  • B. Miller
    • 2
  1. 1.McKay Laboratory of Orthopaedic Surgery ResearchUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Textile Research InstitutePrincetonUSA

Personalised recommendations