Skip to main content
Log in

New types of hydrous titanium oxides obtained by homogeneous precipitation from (titanium (III) chloride + urea) solutions

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Four kinds of hydrous titanium oxide (HTiO) were prepared by refluxing 1 mol dm−3 titanium (III) chloride (TiCl3) solutions containing urea (urea to titanium mole ratio=2.0, 3.0, 4.5, and 6.0; the (TiCl3 + urea) system) at 371 K. Their physicochemical properties were investigated by means of X-ray diffraction (XRD), differential thermal analysis (DTA-TG), electronmicroscopy, colour measurement, and nitrogen adsorption-desorption at 77K. A rod-like sample 0.2 µ wide and 1.0 µm long was obtained in the case of urea to titanium mole ratio of 2.0. The transmission electronmicrograph showed that the rods were aggregates of acicular crystals in a parallel arrangement. Blue samples of microcrystalline rutile were obtained in the case of an urea to titanium mole ratio above 3.0. The electron spin resonance (ESR) measurement showed that the blue colouration was ascribed to the presence of stable paramagnetic titanium (III) ions.

A chemical mechanism for the formation of rod-like and blue-coloured HTiOs is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. HEITNER-WIRGUIN and A. ALBU-YARON,J. Inorg. Nucl. Chem. 28 (1966) 2379.

    Article  CAS  Google Scholar 

  2. J. P. BONSACK,J. Colloid Interface Sci. 44 (1973) 430.

    Article  CAS  Google Scholar 

  3. Y. INOUE and M. TSUJI,J. Nucl. Sci. Technol. 13 (1976) 85.

    CAS  Google Scholar 

  4. H. HARADA and T. UEDA,Chem. Phys. Lett. 106 (1984) 229.

    Article  CAS  Google Scholar 

  5. K. FUNAKI and Y. SEKI,Kogyo Kagaku Zasshi 59 (1956) 1291.

    CAS  Google Scholar 

  6. Idem, ibid. 59 (1956) 1295.

    CAS  Google Scholar 

  7. S. J. GREGG and M. POPE,Kolloid-Z. 174 (1961) 27.

    Article  CAS  Google Scholar 

  8. M. R. HARRIS and G. WHITAKER,J. Appl. Chem. 12 (1962) 490.

    CAS  Google Scholar 

  9. Idem. ibid. 13 (1963) 198.

    CAS  Google Scholar 

  10. E. MATIJEVIC, M. BUDNIK, and L. MEITES,J. Colloid Interface Sci. 61 (1977) 302.

    CAS  Google Scholar 

  11. T. M. EL-AKKAD, —ibid.76 (1980) 67.

    CAS  Google Scholar 

  12. Idem, ibid. 78 (1980) 100.

    CAS  Google Scholar 

  13. J. RAGAI, K. S. W. SING and R. MIKHAIL,J. Chem. Tech. Biotech. 30 (1980) 1.

    CAS  Google Scholar 

  14. J. RAGAI and K. S. W. SING, —ibid.32 (1982) 988.

    CAS  Google Scholar 

  15. J. RAGAI and K. S. W. SING,J. Colloid Interface Sci. 101 (1984) 369.

    Article  CAS  Google Scholar 

  16. J. RAGAI and S. I. SELIM, —ibid.115 (1987) 139.

    Article  CAS  Google Scholar 

  17. K. OOI, T. KITAMURA, S. KATOH and K. SUGASAKA,Nippon Kagaku Kaishi (1983) 1.

  18. K. OOI, T. KITAMURA, S. KATOH and K. SUGASAKA,ibid. (1984) 534.

  19. K. OOI, S. KATOH and K. SUGASAKA,J. Colloid Interface Sci. 119 (1987) 595.

    Article  CAS  Google Scholar 

  20. K. OOI, Y. MIYAI, S. KATOH and K. SUGASAKA,Bull. Chem. Soc. Jpn 61 (1988) 2721.

    Google Scholar 

  21. E. SANTACESARIA, M. TONELLO, G. STORTI, R. C. PACE and S. CARRA,J. Colloid Interface Sci. 111 (1986) 44.

    Article  CAS  Google Scholar 

  22. B. E. YOLDAS,J. Mater. Sci. 21 (1986) 1087.

    CAS  Google Scholar 

  23. K. KAMIYA, K. TANIMOTO and T. YOKO,J. Mater. Sci. Lett. 5 (1986) 402.

    Article  CAS  Google Scholar 

  24. K. KAMIYA, T. YOKO and M. BESSHO,J. Mater. Sci. 22 (1987) 937.

    Article  CAS  Google Scholar 

  25. F. C. MAYVILLE, R. E. PARTCH and E. MATIJEVIC,J. Colloid Interface Sci. 120 (1987) 135.

    Article  CAS  Google Scholar 

  26. F. SUZUKI, S. FUKUSHIMA, T. MITSUI and S. OHTA,J. Soc. Cosmet. Chem. 29 (1978) 59.

    CAS  Google Scholar 

  27. E. P. BARRET, L. G. JOYER and P. P. HALENDA,J. Amer. Chem. Soc. 73 (1951) 373.

    Google Scholar 

  28. H. P. KLUG, L. E. ALEXANDER, in “X-ray Diffraction Procedure for Polycrystalline and Amorphous Materials” (John Wiley, New York, 1956) p. 491.

    Google Scholar 

  29. R. F. HOWE and M. GRATZEL,J. Phys. Chem. 89 (1985) 4495.

    Article  CAS  Google Scholar 

  30. S. J. GREGG, K. S. W. SING, in “Adsorption, Surface Area and Porosity” (Academic, London, 1982) p. 4.

    Google Scholar 

  31. R. L. PECSOK and A. N. FLETCHER,Inorg. Chem. 1 (1962) 155.

    Article  CAS  Google Scholar 

  32. P. I. PREMOVIC and P. R. WEST,Can. J. Chem. 52 (1974) 2919.

    CAS  Google Scholar 

  33. C. F. BAES Jr. and R. E. MESMER, in “The Hydrolysis of Cations” (John Wiley, New York, 1976) p. 147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ookubo, A., Ooi, K. & Tomita, T. New types of hydrous titanium oxides obtained by homogeneous precipitation from (titanium (III) chloride + urea) solutions. J Mater Sci 24, 3599–3604 (1989). https://doi.org/10.1007/BF02385745

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02385745

Keywords

Navigation