Advertisement

Arkiv för Matematik

, Volume 36, Issue 1, pp 177–190 | Cite as

Automorphismes analytiques des domaines produits

  • Jean-Pierre Vigué
Article
  • 31 Downloads

Abstract

In this paper, I study the group of analytic automorphisms of a bounded product domain in the spaceC(S,C) of continuous functions on a compact spaceS. I prove that its automorphism group is a Lie group and I am able to prove which are the bounded symmetric ones.

Keywords

Continuous Function Automorphism Group Compact spaceS Product Domain Analytic Automorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Abd-Alla, M., Domaines de Reinhardt bornés homogènes deC(S,,C), dansSéminaire d'Analyse (Lelong, P., Dolbeault, P. et Skoda, H., éds), Lecture Notes in Math.1198, p. 1–34, Springer-Verlag, Berlin-Heidelberg 1986.Google Scholar
  2. 2.
    Barton, T., Dineen, S. etTimoney, R., Bounded Reinhardt domains in Banach spaces,Compositio Math. 59 (1986), 265–321.MathSciNetGoogle Scholar
  3. 3.
    Braun, R., Kaup, W. etUpmeier, H., On the automorphisms of circular and Reinhardt domains in complex Banach spaces,Manuscripta Math 25 (1978), 97–133.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Cartan, H., Les fonctions de deux variables complexes et le problème de la représentation analytique,J. Math. Pures Appl. 10 (1931), 1–114.MATHMathSciNetGoogle Scholar
  5. 5.
    Choquet, G.,Cours d'analyse tome II, Masson, Paris, 1969.Google Scholar
  6. 6.
    Dunford, N. etSchwartz, J.,Linear Operators Part I, Interscience Publishers, New York, 1958.Google Scholar
  7. 7.
    Greenfield, S. etWallach, N., Automorphism groups of bounded domains in Banach spaces,Trans. Amer. Math. Soc. 166 (1972), 45–57.MathSciNetGoogle Scholar
  8. 8.
    Kaup, W. etUpmeier, H., Banach spaces with biholomorphically equivalent unit balls are isomorphic,Proc. Amer. Math. Soc. 58 (1976), 129–133.MathSciNetGoogle Scholar
  9. 9.
    Stachó, L., On fixed points of holomorphic automorphisms,Ann. Mat. Pura Appl. 78 (1980), 207–225.Google Scholar
  10. 10.
    Upmeier, H., Über die Automorphismengruppen von Banach-Mannigfaltigkeiten mit invarianter Metrik,Math. Ann. 223 (1976), 279–288.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Vesentini, E., On the Banach-Stone theorem,Adv. in Math. 112 (1995), 135–146.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Vigué, J.-P., Le groupe des automorphismes analytiques d'un domaine borné d'un espace de Banach complexe. Application aux domaines bornés symétriques,Ann. Sci. École Norm. Sup. 9 (1976), 203–282.MATHGoogle Scholar
  13. 13.
    Vigué, J.-P., Automorphismes analytiques des produits continus de domaines bornés,Ann. Sci. École Norm. Sup. 11 (1978), 229–246.MATHGoogle Scholar
  14. 14.
    Vigué, J.-P., Automorphismes analytiques d'un domaine de Reinhardt borné d'un espace de Banach à base,Ann. Inst. Fourier (Grenoble) 34:2 (1984), 67–87.MATHMathSciNetGoogle Scholar
  15. 15.
    Vigué, J.-P. etIsidro, J., Sur la topologie du groupe des automorphismes analytiques d'un domaine cerclé borné,Bull. Sci. Math. 106 (1982), 417–426.MathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler. All rights reserved 1998

Authors and Affiliations

  • Jean-Pierre Vigué
    • 1
  1. 1.URA CNRS D1322 Groupes de Lie et Géométrie MathématiquesUniversité de PoitiersPoitiers CedexFrance

Personalised recommendations