Advertisement

Arkiv för Matematik

, Volume 36, Issue 1, pp 1–30 | Cite as

On the vector valued Hausdorff-Young inequality

  • Mats Erik Andersson
Article

Abstract

This paper studies Banach space valued Hausdorff-Young inequalities. The largest part considers ways of changing the underlying group. In particular the possibility to deduce the inequality for open subgroups as well as for quotient groups arising from compact subgroups is secured. A large body of results concerns the classical groupsT n ,R n andZ k . Notions of Fourier type are introduced and they are shown to be equivalent to properties expressed by finite groups alone.

Keywords

Large Body Finite Group Quotient Group Compact Subgroup Open Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1]Andersson, M. E.,The Hausdorff-Young inequality and Fourier Type, Ph. D. Thesis, Uppsala, 1993.Google Scholar
  2. [A2]Andersson, M. E., Local variants of the Hausdorff-Young inequality, inAnalysis, Algebra and Computers in Mathematical Research (Gyllenberg, M. and Persson, L.-E. eds.), pp. 25–34, Marcel-Decker. New York, 1994.Google Scholar
  3. [Ba]Babenko, K. I., An inequality in the theory of Fourier integrals,Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 531–542 (Russian). English transl.: in,Twelve Papers on Approximations and Integrals, Amer. Math. Soc. Transl.44, pp. 115–128, Amer. Math. Soc., Providence, R. I., 1965.MATHMathSciNetGoogle Scholar
  4. [Be]Beckner, W., Inequalities in Fourier analysis,Ann. of Math. 102 (1975), 159–182.MATHMathSciNetGoogle Scholar
  5. [Bo]Bourbaki, N.,Intégration, Livre VI, Éléments de mathématique 29, Chapitre 7∶7, Hermann, Paris, 1963.Google Scholar
  6. [B1]Bourgain, J., A Hausdorff-Young inequality forB-convex Banach spaces,Pacific J. Math.,101 (1982), 255–262.MATHMathSciNetGoogle Scholar
  7. [B2]Bourgain, J., Vector-valued Hausdorff-Young inequalities and applications, inGeometric Aspects of Functional Analysis (Lindenstrauss, J. and Milman, V. D., eds.), Lecture Notes in Math.1317, pp. 239–249, Springer-Verlag, Berlin-Heidelberg, 1988.Google Scholar
  8. [C]Cohn, D. L.,Measure Theory, Birkhäuser, Boston, 1980.Google Scholar
  9. [CS]Cwikel, M. andSagher, Y., An extension of Fourier type to quasi-Banach spaces, inFunction Spaces and Applications (Cwikel, M., Peetre, J., Sagher, Y. and Wallin, H., eds.), Lecture Notes in Math.1302, pp. 171–176, Springer-Verlag, Berlin-Heidelberg, 1988.Google Scholar
  10. [G]Gardiner, C. F.,A First Course in Group Theory, Springer-Verlag, New York, 1980.Google Scholar
  11. [GKT]García-Cuerva, J., Kazarian, K. S. andTorrea, J. L., Hausdorff-Young type theorems for vector-valued Fourier transforms and applications, Preprint, 1994.Google Scholar
  12. [K]König, H., On the Fourier coefficients of vector-valued functions,Math. Nachr. 152 (1991), 215–227.MATHMathSciNetGoogle Scholar
  13. [L]Lieb, E. H., Gaussian kernels have only Gaussian maximizers,Invent. Math. 102 (1990), 179–208.CrossRefMATHMathSciNetGoogle Scholar
  14. [LP]Lions, J. L. andPeetre, J., Sur une classe d'espaces d'interpolation,Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5–68.MathSciNetGoogle Scholar
  15. [M1]Milman, M., Fourier type and complex interpolationProc. Amer. Math. Soc. 89 (1983), 246–248.MATHMathSciNetGoogle Scholar
  16. [M2]Milman, M., Complex interpolation and geometry of Banach spaces,Ann. Mat. Pura Appl.,136 (1984), 317–328.CrossRefMATHMathSciNetGoogle Scholar
  17. [P1]Peetre, J., Sur la transformation de Fourier des fonctions a valeurs vectorielles,Rend. Sem. Mat., Univ. Padova 42 (1969), 15–26.MATHMathSciNetGoogle Scholar
  18. [P2]Peetre, J., Sur l'utilisation des suites inconditionellement sommables dans la théorie des espaces d'interpolation,Rend. Sem. Mat., Univ. Padova 46 (1971), 173–190.MathSciNetGoogle Scholar
  19. [Re]Reiter, H.,Classical Harmonic Analysis and Locally Compact Groups, Clarendon Press, Oxford, 1968.Google Scholar
  20. [R]Rudin, W.,Fourier Analysis on Groups, Wiley, New York, 1962.Google Scholar
  21. [Ru1]Russo, B., The norm of theL p-Fourier transform on unimodular groupsTrans. Amer. Math. Soc.,192 (1974), 293–305.MATHMathSciNetGoogle Scholar
  22. [Ru2]Russo, B., The norm of theL p-Fourier transform II,Canad. J. Math.,28 (1976), 1121–1131.MATHMathSciNetGoogle Scholar
  23. [Ru3]Russo, B., Operator theory in harmonic analysis, inBanach Spaces of Analytic Functions (Baker, J., Cleaver, C. and Diestel, J., eds.), Lecture Notes in Math.604, pp. 94–102, Springer-Verlag, Berlin-Heidelberg, 1977.Google Scholar
  24. [Ru4]Russo, B., On the Hausdorff-Young theorem for integral operators,Pacific J. Math.,68 (1977), 241–253.MATHMathSciNetGoogle Scholar
  25. [Ru5]Russo, B., The norm of theL p-Fourier transform III,J. Funct. Anal.,30 (1978), 162–178.CrossRefMATHMathSciNetGoogle Scholar
  26. [S]Sjölin, P., A remark on the Hausdorff-Young inequality,Proc. Amer. Math. Soc. 123 (1995), 3085–3088.MATHMathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1998

Authors and Affiliations

  • Mats Erik Andersson
    • 1
  1. 1.Department of MathematicsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations