Journal of Materials Science

, Volume 24, Issue 8, pp 2903–2910 | Cite as

Corrosion of cordierite ceramics by sodium sulphate at 1000°C

  • Robert Bianco
  • Nathan Jacobson


The corrosion of a sintered cordierite (2MgO·2Al2O3·5SiO2) ceramic by sodium sulphate (Na2SO4)—a common combustion condensate—was investigated at 1000°C. Laboratory tests with thin films of Na2SO4/O2 and Na2SO4/1% SO2−O2 were performed. In the Na2SO4/O2 case, the cordierite reacted to form NaAlSiO4. After several hours of corrosion, the Na2SO4 appeared to induced surface cracks in the cordierite. In the Na2SO4/1% SO2−O2 case, other dissolution reactions occurred. The material was also tested in a burner rig with No. 2 Diesel fuel and 2 p p m sodium. The corrosion process was similar to that observed in the Na2SO4/O2 furnace tests, with more severe attack occurring.


Polymer Burner Thin Film Furnace Diesel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. MORRELL,Proc. Brit. Ceram. Soc. 28 (1978) 53.Google Scholar
  2. 2.
    I. M. LACHMAN, R. D. BAGLEY and R. M. LEWIS,Amer. Ceram. Soc. Bull. 60 (1981) 202.Google Scholar
  3. 3.
    G. L. BOYD, J. R. KIDWELL and D. M. KREINER, in “Proceedings of the Twenty-Fourth Automotive Technology Development Contractors’ Coordination Meeting” (Society of Automotive Engineers, Warrendale, PA, 1986) pp. 115–135.Google Scholar
  4. 4.
    F. J. KOHL, C. A. STEARNS and G. C. FRYBURG, in “Metal-Slag-Gas Reactions and Process’ (The Electrochemical Society, Princeton, New Jersey, 1975), pp. 649–654.Google Scholar
  5. 5.
    T. STRANGMAN, Private Communication.Google Scholar
  6. 6.
    R. A. RAPP,Corrosion-NACE 42 (1986) 568.Google Scholar
  7. 7.
    N. S. JACOBSON,J. Amer. Ceram. Soc. 69 (1986) 74.CrossRefGoogle Scholar
  8. 8.
    N. S. JACOBSON, C. A. STEARNS and J. L. SMIALEK,Adv. Ceram. Mater. 1 (1986) 154.Google Scholar
  9. 9.
    S. BROOKS and R. MORRELL, in “Environmental Degradation of High Temperature Materials”, Vol. 2, (Institute of Metallurgists, London, 1980) pp. 3/21–3/25.Google Scholar
  10. 10.
    W. D. KINGERY, H. K. BOWEN and D. R. UHLMANN, “Introduction to Ceramics”, 2nd Edn (Wiley, New York, 1976), pp. 407–413.Google Scholar
  11. 11.
    B. N. SAMADDAR, W. D. KINGERY and A. R. COOPER, Jr.,J. Amer. Ceram. Soc. 47 (1964) 249.Google Scholar
  12. 12.
    L. P. COOK, in “19th Symposium on Engineering Aspects of Magnetohydrodynamics”, edited by M. H. Scott (University of Tennessee Space Institute, Tullahoma, Tennessee, 1981) pp. 15.3.1–15.3.6.Google Scholar
  13. 13.
    Handbook of Chemistry and Physics, 39th Edn, edited by C. D. Hodgeman (Chemical Rubber Company, Cleveland, Ohio, 1957).Google Scholar
  14. 14.
    G. C. FRYBURG, F. J. KOHL, C. A. STEARNS and W. L. FIELDER,J. Electrochem. Soc. 129 (1982) 571.Google Scholar
  15. 15.
    C. L. LUKE,Anal. Chim. Acta. 43 (1968) 245.CrossRefGoogle Scholar
  16. 16.
    I. BARIN and O. KNACKE, “Thermomechanical Properties of Inorganic Substances” (Springer-Verlag, New York, 1973).Google Scholar
  17. 17.
    Idem, “Thermomechanical Properties of Inorganic Substances, Supplement” (Springer-Verlag, New York, 1977).Google Scholar
  18. 18.
    H. C. HELGESON, J. M. DELANY, H. W. NESBITT and D. K. BIRD,Amer. J. Sci. 278-A (1978) 1.Google Scholar
  19. 19.
    N. S. JACOBSON,Oxid. of Metals 31 (1989) 91.Google Scholar
  20. 20.
    P. D. JOSE, D. K. GUPTA and R. A. RAPP,J. Electrochem. Soc. 132 (1985) 735.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1989

Authors and Affiliations

  • Robert Bianco
    • 1
  • Nathan Jacobson
    • 1
  1. 1.NASA Lewis Research CenterClevelandUSA

Personalised recommendations