Advertisement

Journal of Materials Science

, Volume 24, Issue 8, pp 2711–2721 | Cite as

Fabrication and characterization of zirconia-toughened alumina obtained by inorganic and organic precursors

  • J. P. Bach
  • F. Thevenot
Papers

Abstract

In zirconia-toughened alumina (ZTA) the martensitic transformation of zirconia (tetragonal→ monoclinic) is at the origin of toughening. If the zirconia particles have a mean grain size less thand’c, they remain tetragonal; if their size is betweend’c anddc (dc>d’c), they are stress-induced transformed into the monoclinic form; if their size is larger thandc, particles are transformed. We prepared ZTA using different precursors and compared their microstructures. The coprecipitation of aluminium and zirconium chlorides gives an hydroxide mixture. Thus the zirconium hydrate is amorphous, and the aluminium hydroxide structure varies with the precipitation temperature and pH values at the end of the neutralization. Alumina is mixed with zirconia obtained by gas-phase reaction. Zirconia is prepared by vaporization of zirconium chloride in an oxygen-hydrogen flame. Alumina powder is impregnated by a zirconium acetate solution. Zirconium acetate is thermally decomposed in a spray-dryer, then by calcination. The cohydrolysis of II Al-butoxide and IV Zr-propoxide was carried out in an alkaline solution. The hydrolysis pH (10 or 12) changes the grain size of the oxide powders. Mechanical property measurements and microstructural analysis allow a comparison of the different composites. The mean grain-size evolution differs according to the preparative route, and may be varied by different elaboration parameters. Fine microstructures were always observed. The mean grain size of dispersed zirconia being very small (neard’c), we observed a little influence of transformation toughening. We noticed a large increase in rupture strength, while toughness was not noticeably improved.

Keywords

Zirconia Aluminium Hydroxide Acetate Solution Organic Precursor Zirconia Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. F. LANGE, in “Fracture mechanics of ceramics”, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1978).Google Scholar
  2. 2.
    F. CAMBIER,Silicates Industriels 11 (1982) 263.Google Scholar
  3. 3.
    G. M. WOLTEN,J. Amer. Ceram. Soc. 46 (1963) 418.Google Scholar
  4. 4.
    A. G. EVANS and K. T. FABER,—ibid.64 (1981) 394.Google Scholar
  5. 5.
    R. Mc MEEKING and A. G. EVANS,—ibid.65 (1982) 242.Google Scholar
  6. 6.
    N. CLAUSSEN and M. RUHLE, in “Advance in Ceramics”, Vol. 3, “Science and Technology of Zirconia” edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Columbus, Ohio, 1981) p. 137.Google Scholar
  7. 7.
    P. HOMERIN, F. THEVENOT, G. ORANGE, G. FANTOZZI, V. VANDENEEDE, A. LERICHE and F. CAMBIER,J. de Phys. Coll. C1 2 (1986) C1–717.Google Scholar
  8. 8.
    K. S. MAZDIYASNI, C. T. LYNCH and J. S. SMITH,J. Amer. Ceram. Soc. 48 (1965) 372.Google Scholar
  9. 9.
    D. GREBILLE, Thèse docteur-ingénieur, Ecole Centrale Paris, F, 21 June 1982, p. 89.Google Scholar
  10. 10.
    E. MATIJEVIK, K. G. MATHAI, R. H. OTTEWILL and M. KERKER,J. Phys. Chem. 65 (1961) 826.Google Scholar
  11. 11.
    J. H. PATTERSON and S. Y. TYREE,J. Coll. Int. Soc. 43 (1973) 389.Google Scholar
  12. 12.
    T. SATO,Anorg. Allg. Chem. 391 (1972) 69.Google Scholar
  13. 13.
    P. H. HSU,Soil. Sci. Soc. Amer. Proc. 30 (1966) 173.Google Scholar
  14. 14.
    B. IMELICK, M. V. MATHIEU, M. PRETTRE and S. TEICHNER,J. Chim. Phys. 51 (1954) 651.Google Scholar
  15. 15.
    T. SATO,J. Appl. Chem. Biotechnol. 24 (1974) 187.Google Scholar
  16. 16.
    G. J. ROSS and P. C. TRNER,Soil. Sci. Soc. Amer. Proc. 35 (1971) 389.Google Scholar
  17. 17.
    M. C. GASTUCHE and A. HERBILLON,Bull. Soc. Chim. (F) 243 (1962) 1404.Google Scholar
  18. 18.
    B. E. YOLDAS,J. Appl. Chem. Biotech. 23 (1973) 803.Google Scholar
  19. 19.
    Idem, Amer. Ceram. Soc. Bull. 54 (1975) 289.Google Scholar
  20. 20.
    Idem, J. Mater. Sci. 12 (1977) 1203.Google Scholar
  21. 21.
    A. FANELLI and J. U. BURLEY,J. Amer. Ceram. Soc. 65 (1986) C174.Google Scholar
  22. 22.
    A. AYRAL and J. PHALIPPOU, Ilème Conf. Francoallemande céramiques techniques, Aachen, Germany, 4–6 March 1987.Google Scholar
  23. 23.
    B. E. YOLDAS,J. Amer. Ceram. Soc. 65 (1982) 387.Google Scholar
  24. 24.
    B. MIRHADI and H. HAUSNER,Cfi-Ber. Dt. Keram. Ges. 62 (1985) 86.Google Scholar
  25. 25.
    H. ENDL, B. D. KRUSE and H. HAUSNER,Ber. Dt. Keram. Ges. (1977) 105.Google Scholar
  26. 26.
    P. F. BECHER, J. M. SOMMERS, B. A. BENDERS and B. A. McFARLANE,Mater. Sci. Res. 11 (1978) 79.Google Scholar
  27. 27.
    K. D. FRITSCHE,Freib. Forsch. H.A. 657 (1983) 11.Google Scholar
  28. 28.
    J. ULBRICHT, V. POSCHMANN and J. BARTHEL,Silikat Technik 34 (1983) 361.Google Scholar
  29. 29.
    P. F. BECHER and V. J. TENNERY, in “Fracture mechanics of ceramics”, edited by R. C. Bradt, D. P. H. Hasselman, F. F. Lange and A. C. Evans (Plenum, New York, 1983) p. 383.Google Scholar
  30. 30.
    P. F. BECHER, J. H. SOMMERS, B. A. BENDER and B. A. McFARLANE,Mater. Sci. Res. 11 (1978) 79.Google Scholar
  31. 31.
    P. F. BECHER,J. Amer. Ceram. Soc. 64 (1981) 37.Google Scholar
  32. 32.
    J. P. BACH, Thèse, Ecole des Mines de Saint-Etienne, 21 January 1988, no. 16 TD, 216, pp.Google Scholar
  33. 33.
    J. P. BACH, P. ORLANS, J. P. LECOMPTE, B. GILHOT and F. THEVENOT, “Science of Ceramics 14”, (Institute of Ceramics, Shelton, Staffs, UK, 1987).Google Scholar
  34. 34.
    J. P. BACH, F. THEVENOT, G. ORANGE, G. FANTOZZI and P. VERGNON,Silicates industriels,53 (1988) 153.Google Scholar
  35. 35.
    G. ORANGE, G. FANTOZZI, P. HOMERIN, J. P. BACH, F. THEVENOT and P. VERGNON, “Optimisation du comportement thermomécanique de composites a dispersoides à base d’alumine: influence des propriétés morphologique et structurales des poudres et leur frittage” (Compte rendu de l’A.T.P. du CNRS no. 8239, 1986).Google Scholar
  36. 36.
    J. P. BACH, P. HOMERIN, F. THEVENOT, G. ORANGE and G. FANTOZZI, Proceedings of the World Congress on High Technology Ceramics, 6th CIMTEC, edited by P. Vincenzini, Milan, (I), June 1986.Google Scholar
  37. 37.
    J. P. BACH, F. THEVENOT, B. MIRHADI and H. HAUSNER,Rev. Int. Hautes Temp. Réfract. 24 (1987) 211.Google Scholar
  38. 38.
    R. C. GARVIE and P. S. NICHOLSON,J. Amer. Ceram. Soc. 55 (1972) 302.Google Scholar
  39. 39.
    G. ORANGE, G. FANTOZZI, P. HOMERIN, F. THEVENOT, A. LERICHE and F. CAMBIER, “Science and Technology of zirconia III”, Tokyo, 9–11 September 1986, in press.Google Scholar
  40. 40.
    A. A. GRIFFITH,Phil. Trans. Roy. Soc. 221 A (1920) 163.Google Scholar
  41. 41.
    N. CLAUSSEN, J. STEEB and R. F. PABST,J. Amer. Ceram. Soc. 60 (1977) 559.Google Scholar
  42. 42.
    F. F. LANGE, in “Fracture mechanisms of ceramics”, vol. 4, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1978) p. 799.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1989

Authors and Affiliations

  • J. P. Bach
    • 1
  • F. Thevenot
    • 1
  1. 1.Ecole des MinesSaint-Etienne Cédex 2France

Personalised recommendations