Skip to main content
Log in

A transformation from Hausdorff to Stieltjes moment sequences

  • Published:
Arkiv för Matematik

Abstract

We introduce a non-linear injective transformation τ from the set of non-vanishing normalized Hausdorff moment sequences to the set of normalized Stieltjes moment sequences by the formulaT[(a n ) n=1 ] n = 1/a 1 ...a n . Special cases of this transformation have appeared in various papers on exponential functionals of Lévy processes, partly motivated by mathematical finance. We give several examples of moment sequences arising from the transformation and provide the corresponding measures, some of which are related toq-series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, N. I.,The Classical Moment Problem and Some Related Questions in Analysis, Hafner Publ., New York, 1965.

    Google Scholar 

  2. Berg, C., Correction to a paper by A. G. Pakes,J. Austral. Math. Soc 76 (2004), 67–73.

    MATH  Google Scholar 

  3. Berg, C., On a generalized Gamma convolution related to theq-calculus, inTheory and Applications of Special Functions. (Ismail, M. E. H. and Koelink, E., eds.), Kluwer, Dordrecht, 2004.

    Google Scholar 

  4. Berg, C., On powers of Stieltjes moment sequences I,Submitted.

  5. Berg, C., Christensen, J. P. R. andRessel, P.,Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Graduate Texts in Math.100, Springer-Verlag, New York, 1984.

    Google Scholar 

  6. Berg, C. andForst, G.,Potential Theory on Locally Compact Abelian Groups. Ergebnisse der Math. und ihrer Grenzgebiete87, Springer-Verlag, New York-Heidelberg, 1975.

    Google Scholar 

  7. Berg, C. andThill, M., Rotation invariant moment problems,Acta Math. 167 (1991), 207–227.

    MathSciNet  Google Scholar 

  8. Berg, C. andValent, G., The Nevanlinna parametrization for some indeterminate Stieltjes moment problems associated with birth and death processes,Methods Appl. Anal. 1 (1994), 169–209.

    MathSciNet  Google Scholar 

  9. Bertoin, J.,Lévy Processes. Cambridge Tracts in Math.121, Cambridge Univ. Press, Cambridge, 1996.

    Google Scholar 

  10. Bertoin, J., Biane, P. andYor, M., Poissonian exponential functionals,q-series,q-integrals, and the moment problem for the log-normal distribution. To appear inProgress in Probability, Birkhäuser, Basel-Boston, 2004.

    Google Scholar 

  11. Bertoin, J. andYor, M., On subordinators, self-similar Markov processes and some factorizations of the exponential variable,Electron. Comm. Probab. 6 (2001), 95–106.

    MathSciNet  Google Scholar 

  12. Bertoin, J. andYor, M., On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes,Ann. Fac. Sci. Toulouse Math. 11 (2002), 33–45.

    MathSciNet  Google Scholar 

  13. Carmona, P., Petit, F. andYor, M., Sur les fonctionelles exponentielles de certains processus de Lévy,Stochastics Stochastics Rep. 47 (1994), 71–101.

    MathSciNet  Google Scholar 

  14. Carmona, P., Petit, F. andYor, M., On the distribution and asymptotic results for exponential functionals of Lévy processes, inExponential Functionals and Principal Values Related to Brownian Motion, Rev. Mat. Iberoamericana, Madrid, pp. 73–130, 1997.

  15. Chihara, T. S., Indeterminate symmetric moment problems,J. Math. Anal. Appl. 85 (1982), 331–346.

    Article  MATH  MathSciNet  Google Scholar 

  16. Christiansen, J. S., The moment problem associated with the Stieltjes-Wigert polynomials,J. Math. Anal. Appl. 277 (2003), 218–245.

    Article  MATH  MathSciNet  Google Scholar 

  17. Euler, L.,Introductio in analysin infinitorum, Book I, Marcum-Michaelem Bousquet & Socios, Lausanne, 1748. English transl.:Introduction to Analysis of the Infinite, Book I, Springer-Verlag, New York, 1988.

    Google Scholar 

  18. Gasper, G. andRahman, M.,Basic Hypergeometric Series. Encyclopedia of Math. and its Appl.35, Cambridge Univ. Press, Cambridge, 1990.

    Google Scholar 

  19. Hausdorff, F., Momentprobleme für ein endliches Intervall,Math. Z. 16 (1923), 220–248.

    MATH  MathSciNet  Google Scholar 

  20. Jacobsen, M. andYor, M., Multi-self-similar Markov processes onR n+ and their Lamperti representations,Probab. Theory Related Fields 126 (2003), 1–28.

    Article  MathSciNet  Google Scholar 

  21. Lamperti, J., Semi-stable Markov processes,Z. Wahrsch. Verw. Gebiete 22 (1972), 205–225.

    Article  MATH  MathSciNet  Google Scholar 

  22. Shohat, J. A. andTamarkin, J. D.,The Problem of Moments, Amer. Math. Soc. Math. Surveys,2, Amer. Math. Soc., New York, 1943.

    Google Scholar 

  23. Stieltjes, T.-J., Recherches sur les fractions continues,Ann. Fac. Sci. Toulouse 8 (1894), J1-J122;9 (1895), A5–A47.

    MathSciNet  Google Scholar 

  24. Urbanik, K., Functionals on transient stochastic processes with independent increments,Studia Math. 103 (1992), 299–315.

    MATH  MathSciNet  Google Scholar 

  25. Widder, D. V.,The Laplace Transform, Princeton Math. Ser.6, Princeton Univ. Press, Princeton, NJ, 1941.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was done while the first author was visiting University of Sevilla supported by the Secretaría de Estado de Educación y Universidades, Ministerio de Ciencia, Cultura y Deporte de España, SAB2000-0142. The work of the second author has been supported by DGES ref. BFM-2000-206-C04-02 and FQM 262 (Junta de Andalucía).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, C., Durán, A.J. A transformation from Hausdorff to Stieltjes moment sequences. Ark. Mat. 42, 239–257 (2004). https://doi.org/10.1007/BF02385478

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02385478

Keywords

Navigation