Abstract
We introduce a non-linear injective transformation τ from the set of non-vanishing normalized Hausdorff moment sequences to the set of normalized Stieltjes moment sequences by the formulaT[(a n ) ∞ n=1 ] n = 1/a 1 ...a n . Special cases of this transformation have appeared in various papers on exponential functionals of Lévy processes, partly motivated by mathematical finance. We give several examples of moment sequences arising from the transformation and provide the corresponding measures, some of which are related toq-series.
Similar content being viewed by others
References
Akhiezer, N. I.,The Classical Moment Problem and Some Related Questions in Analysis, Hafner Publ., New York, 1965.
Berg, C., Correction to a paper by A. G. Pakes,J. Austral. Math. Soc 76 (2004), 67–73.
Berg, C., On a generalized Gamma convolution related to theq-calculus, inTheory and Applications of Special Functions. (Ismail, M. E. H. and Koelink, E., eds.), Kluwer, Dordrecht, 2004.
Berg, C., On powers of Stieltjes moment sequences I,Submitted.
Berg, C., Christensen, J. P. R. andRessel, P.,Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Graduate Texts in Math.100, Springer-Verlag, New York, 1984.
Berg, C. andForst, G.,Potential Theory on Locally Compact Abelian Groups. Ergebnisse der Math. und ihrer Grenzgebiete87, Springer-Verlag, New York-Heidelberg, 1975.
Berg, C. andThill, M., Rotation invariant moment problems,Acta Math. 167 (1991), 207–227.
Berg, C. andValent, G., The Nevanlinna parametrization for some indeterminate Stieltjes moment problems associated with birth and death processes,Methods Appl. Anal. 1 (1994), 169–209.
Bertoin, J.,Lévy Processes. Cambridge Tracts in Math.121, Cambridge Univ. Press, Cambridge, 1996.
Bertoin, J., Biane, P. andYor, M., Poissonian exponential functionals,q-series,q-integrals, and the moment problem for the log-normal distribution. To appear inProgress in Probability, Birkhäuser, Basel-Boston, 2004.
Bertoin, J. andYor, M., On subordinators, self-similar Markov processes and some factorizations of the exponential variable,Electron. Comm. Probab. 6 (2001), 95–106.
Bertoin, J. andYor, M., On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes,Ann. Fac. Sci. Toulouse Math. 11 (2002), 33–45.
Carmona, P., Petit, F. andYor, M., Sur les fonctionelles exponentielles de certains processus de Lévy,Stochastics Stochastics Rep. 47 (1994), 71–101.
Carmona, P., Petit, F. andYor, M., On the distribution and asymptotic results for exponential functionals of Lévy processes, inExponential Functionals and Principal Values Related to Brownian Motion, Rev. Mat. Iberoamericana, Madrid, pp. 73–130, 1997.
Chihara, T. S., Indeterminate symmetric moment problems,J. Math. Anal. Appl. 85 (1982), 331–346.
Christiansen, J. S., The moment problem associated with the Stieltjes-Wigert polynomials,J. Math. Anal. Appl. 277 (2003), 218–245.
Euler, L.,Introductio in analysin infinitorum, Book I, Marcum-Michaelem Bousquet & Socios, Lausanne, 1748. English transl.:Introduction to Analysis of the Infinite, Book I, Springer-Verlag, New York, 1988.
Gasper, G. andRahman, M.,Basic Hypergeometric Series. Encyclopedia of Math. and its Appl.35, Cambridge Univ. Press, Cambridge, 1990.
Hausdorff, F., Momentprobleme für ein endliches Intervall,Math. Z. 16 (1923), 220–248.
Jacobsen, M. andYor, M., Multi-self-similar Markov processes onR n+ and their Lamperti representations,Probab. Theory Related Fields 126 (2003), 1–28.
Lamperti, J., Semi-stable Markov processes,Z. Wahrsch. Verw. Gebiete 22 (1972), 205–225.
Shohat, J. A. andTamarkin, J. D.,The Problem of Moments, Amer. Math. Soc. Math. Surveys,2, Amer. Math. Soc., New York, 1943.
Stieltjes, T.-J., Recherches sur les fractions continues,Ann. Fac. Sci. Toulouse 8 (1894), J1-J122;9 (1895), A5–A47.
Urbanik, K., Functionals on transient stochastic processes with independent increments,Studia Math. 103 (1992), 299–315.
Widder, D. V.,The Laplace Transform, Princeton Math. Ser.6, Princeton Univ. Press, Princeton, NJ, 1941.
Author information
Authors and Affiliations
Additional information
This work was done while the first author was visiting University of Sevilla supported by the Secretaría de Estado de Educación y Universidades, Ministerio de Ciencia, Cultura y Deporte de España, SAB2000-0142. The work of the second author has been supported by DGES ref. BFM-2000-206-C04-02 and FQM 262 (Junta de Andalucía).
Rights and permissions
About this article
Cite this article
Berg, C., Durán, A.J. A transformation from Hausdorff to Stieltjes moment sequences. Ark. Mat. 42, 239–257 (2004). https://doi.org/10.1007/BF02385478
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02385478