Arkiv för Matematik

, Volume 17, Issue 1–2, pp 39–50 | Cite as

A generalisation of Widman's theorem on comparison domains for harmonic measures

  • P. J. Rippon


Conformal Mapping Rotational Symmetry Harmonic Measure Characteristic Constant Subharmonic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eke, B. G., On the differentiability of conformal maps at the boundary,Nagoya Math. Journal,41 (1971), 45–53.MathSciNetGoogle Scholar
  2. 2.
    Friedland, S. andHayman, W. K., Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions,Comment. Math. Helv.,51 (1976), 133–161.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Hayman, W. K. andKennedy, P. B.,Subharmonic Functions, Vol. I. Academic Press, 1976.Google Scholar
  4. 4.
    Hayman, W. K. andOrtiz, E., An upper bound for the largest zero of Hermite's functions with applications to subharmonic functions,Proc. Roy. Soc. Edinburgh, Sect. A. 75 (1975/76), 183–197.MathSciNetGoogle Scholar
  5. 5.
    Huber, A., Über Wachstumseigenschaften gewisser Klassen von subharmonischen Funktionen,Comment. Math. Helv.,26 (1952), 81–116.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Rippon, P. J., The boundary behaviour of subharmonic functions,Thesis, Imperial College, 1977.Google Scholar
  7. 7.
    Sperner, E., Zur Symmetrisierung von Funktionen auf Sphären,Math. Z.,134 (1973), 317–327.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Warschawski, S. E., On boundary derivatives in conformal mapping,Ann. Acad. Sci. Fenn., Ser. A, I No420, (1968).Google Scholar
  9. 9.
    Widman, K.-O., Inequalities for the Green's function and boundary continuity of the gradient of solutions of elliptic differential equations,Math. Scand.,21 (1967), 17–37.MATHMathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1979

Authors and Affiliations

  • P. J. Rippon
    • 1
  1. 1.Department of Pure MathematicsUniversity of SheffieldSHEFFIELDEngland

Personalised recommendations