Journal of Materials Science

, Volume 24, Issue 6, pp 2255–2261 | Cite as

Rubber toughening of plastics

Part 12 Deformation mechanisms in toughened nylon 6,6
  • Clive B. Bucknall
  • Patricia S. Heather
  • Andrea Lazzeri


The tensile behaviour of a rubber-toughened polyamide 6,6 (RTPA66) is compared with that of the corresponding untoughened polyamide (PA66). At constant strain rate, moistureconditioned specimens of RTPA66 show a substantial increase in volume ΔV with increasing extension ε, whereas PA66 becomes denser. At ε=40%, ΔV is 60% in RTPA66, but −1.4% in PA66. In creep experiments on both polymers, extension follows the Andrade equation ε(t)=ε(0)+bt1/3. Eyring plots of logb against applied stress σ are linear for the PA66, but the RTPA66 shows a sharp increase ind logb/dσ above 30 MPa, where significant dilatation begins. Scanning electron micrographs of tensile and impact specimens reveal that dilatation in RTPA66 is due to formation of voids within the rubber particles, leading to fibrillation of the nylon matrix at high strains. It is concluded that this cavitation accelerates shear yielding in the nylon matrix.


Polymer Rubber Nylon Cavitation Electron Micrographs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. FLEXMAN,Polym. Eng. Sci. 19 (1979) 564.CrossRefGoogle Scholar
  2. 2.
    U S Patent 1 552 352 (1979).Google Scholar
  3. 3.
    S. Y. HOBBS, R. C. BOPP and V. H. WATKINS,Polym. Eng. Sci. 23 (1983) 380.CrossRefGoogle Scholar
  4. 4.
    S. WU,J. Polym. Sci. Phys. Edn 21 (1983) 699.Google Scholar
  5. 5.
    S. CIMMINO, L. D'ORAZIO, R. GRECO, M. MALINCONICO, C. MANCARELLA, E. MARTUSCELLI, R. PALUMBO and G. RAGOSTA,Polym. Eng. Sci. 24 (1984) 48.CrossRefGoogle Scholar
  6. 6.
    R. J. M. BORGGREVE, R. J. GAYMANS, J. SCHUIJER and J. F. INGEN-HOUSZ,Polymer 28 (1987) 1489.CrossRefGoogle Scholar
  7. 7.
    C. B. BUCKNALL and D. CLAYTON,J. Mater. Sci. 7 (1972) 202.Google Scholar
  8. 8.
    C. B. BUCKNALL and I. C. DRINKWATER,8 (1973) 1800.CrossRefGoogle Scholar
  9. 9.
    C. B. BUCKNALL and C. J. PAGE,17 (1982) 808.CrossRefGoogle Scholar
  10. 10.
    C. B. BUCKNALL, I. K. PARTRIDGE and M. V. WARD,19 (1984) 2064.CrossRefGoogle Scholar
  11. 11.
    H. BREUER, F. HAAF and J. STABENOW,J. Macromol. Sci. Phys. B14 (1977) 387.Google Scholar
  12. 12.
    A. F. YEE and R. A. PEARSON,J. Mater. Sci. 21 (1986) 2462.CrossRefGoogle Scholar
  13. 13.
    21 (1986) 2475.CrossRefGoogle Scholar
  14. 14.
    F. POLATO,20 (1985) 1455.CrossRefGoogle Scholar
  15. 15.
    F. RAMSTEINER and W. HECKMANN,Polym. Commun. 26 (1985) 199.Google Scholar
  16. 16.
    R. J. M. BORGGREVE, PhD Thesis, University of Twente, Netherlands (1988).Google Scholar
  17. 17.
    A. N. GENT and P. B. LINDLEY,Proc. R. Soc. A249 (1969) 2520.Google Scholar
  18. 18.
    K. CHO and A. N. GENT,J. Mater. Sci. 23 (1988) 141.CrossRefGoogle Scholar
  19. 19.
    S. WU,Polymer 26 (1985) 1855.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1989

Authors and Affiliations

  • Clive B. Bucknall
    • 1
  • Patricia S. Heather
    • 1
  • Andrea Lazzeri
    • 1
  1. 1.School of Industrial ScienceCranfield Institute of TechnologyCranfieldUK

Personalised recommendations