Reliable Computing

, Volume 1, Issue 3, pp 285–297 | Cite as

A new characterization of the set of all intervals, based on the necessity to check consistency easily

  • Oriss Misane
  • Vladik Kreinovich
Mathematical Research


The purpose of this paper is to present a new characterization of the set of all intervals. This characterization is based on several natural properies useful in mathematical modeling; the main of these properties is the necessity to easily check consistency of incompletes knowledge. This characterization is obtained both for one-dimensional and for multidimensional cases.


Mathematical Modeling Computational Mathematic Industrial Mathematic Incompletes Knowledge Multidimensional Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Новая характеризация множества всех интервалов, основанная на требовании простой проверки непротиворечивости


Предсталена новая характеризация множества всех интервалов. Зта харак теризация основана на нескльких очевидиых свой проверки матматическом моделировании, главноэ из котоыш — требование простой проверки непротиворечйвости неолноУ знаиия. Даииая зарактернзация применима как к стучаю одной размерностн, так и к многомрным стучаям


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Boltiansky, V. G.Combinatorial geometry. In: Gamkrelidze G. V. (ed.) “Algebra, Topology, Geometry19”, Moscow, VINITI, 1981, pp. 209–274 (in Russian).Google Scholar
  2. [2]
    Bremermann, H. J.Optimization through evolution and recombination. In: Yovitis, Jacobi, and Goldstein (eds) “Self-Organizing System”, Spartan Books Washington, DC, 1962.Google Scholar
  3. [3]
    Bremermann, H. J.., Rogson, M. and Salaff, S..Global properties of evolution processes. In: Pattee, H. H., Edelsack, E. A., Fein, L., and Callahan, A. B. (eds) “Natural Automata and Useful Simulations”, Spartan Books, Washington, DC, 1966.Google Scholar
  4. [4]
    Davidor, Y.Genetic algorithms and robotics: A heuristic strategy for optimization. World Scientific, Singapore, 1991.Google Scholar
  5. [5]
    Goldberg, D. E.Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA, 1989.Google Scholar
  6. [6]
    Holland, J.Outline for a logical theory of adaptive systems. Journal of the ACM 3 (1962), pp. 297–314.Google Scholar
  7. [7]
    Holland, J..Some practicals aspects of adaptive systems theory. In: Kent, A., and Taulbee, O. E. (eds) “Electronic Information Handling”, Spartan Book, Washington, DC, 1965, pp. 209–217.Google Scholar
  8. [8]
    Holland, J..Adaptation in natural artificial systems., University of Michigan Press, Ann Arbor, MI, 1975.Google Scholar
  9. [9]
    Jawhari, E. M., Misane, D., and Pouzet, M.Retracts: graphs and ordered sets from the metric point of view, Contemporary Mathematics 57 (1986), pp. 175–226.MathSciNetGoogle Scholar
  10. [10]
    Kreinovich, V.Why intervals? A simple limit theorem that is similar to limit theorems from statistics. Interval Computations, 1 (1) (1995), pp. 33–40.MATHMathSciNetGoogle Scholar
  11. [11]
    Kreinovich, V., Quintana, C., and Fuentes, O.Genetic algorithms: what fitness scaling is optimal? Cybernetics and Systems: an International Journal 24 (1) (1993), pp. 9–26.MathSciNetGoogle Scholar
  12. [12]
    Misane, D..The necessity to check consistency of expert knowledge explains the current form of fuzzy control In: Hall, L., Ying, H., Langari, R., and Yen, J. (eds) NAFIPS/IFIS/NASA'94, Proceedings of the First International Joint Conference of the North American Fuzzy Information Processing Society Biannual Conference, the Industrial Fuzzy Control and Intelligent Systems Conference, and the NASA Joint Technology Workshop on Neural Networks and Fuzzy Logic, San Antonio, December 18–21, 1994”. IEEE, Piscataway, NJ, pp. 180–181.Google Scholar
  13. [13]
    Misane, D. and Kreinovich, V.Why intervals? Because it is necessary to check consistency. University of Texas at El Paso, Department of Computer Science, Technical Report UTEP-CS-94-16, June 1994.Google Scholar
  14. [14]
    Narin'yani, A. S..Ne-factors and natural pragmatric: what do the intervals represent. Interval Computations 4 (1992), pp. 42–47.MATHMathSciNetGoogle Scholar
  15. [15]
    Özlu, M. T. and Valduriez, P.Principles of distributed database systems Prentice Hall Englewood Cliffs, NJ, 1991.Google Scholar
  16. [16]
    Pfanzangl, J..Theory of measurement Wiley, N.Y., 1968.Google Scholar
  17. [17]
    Szökefalvi-Nagy, B.Ein Satz über Paralleverschiebungen Konvexer Körper. Acta Sci. Math. 15 (3–4) (1954), pp. 169–177.Google Scholar

Copyright information

© Institute of New Technologies in Education 1995

Authors and Affiliations

  • Oriss Misane
    • 1
  • Vladik Kreinovich
    • 2
  1. 1.Département des MathématiquesUniversité Mohammed V Faculté des SciencesRabatMorocco
  2. 2.Computer Science DepartmentUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations