Skip to main content
Log in

Phospholipid base exchange enzyme activity in sarcolemmal membranes from the heart of cardiomyopathic hamsters

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The activity of phospholipid base exchange enzymes has been evaluated in cardiac sarcolemmal membranes from Syrian Golden hamsters and from a hamster strain (UM-X7.1) characterized by a genetic form of hypertrophic cardiomyopathy. No choline base exchange activity and only a little serine base exchange activity were detected, whereas the ethanolamine base exchange enzyme was found highly active in membranes from both strains. For this reason, the present study is focussed on the ethanolamine base exchange enzyme. The apparent Km for ethanolamine of ethanolamine base exchange enzyme from Syrian Golden membranes and from UM-X7.1 strain membranes are 18 and 32 µM, respectively. The specific activity of the sarcolemmal ethanolamine base exchange enzyme is lower in the UM-X7.1 strain than in Syrian Golden hamsters. The calcium-dependence of the enzyme appears different when the membranes from the two strains are compared. Indeed, after removal of the membrane-bound divalent cations, comparable activities are found in both membrane preparations, whereas, upon addition of Ca2+ to the incubation mixtures, the activity of the enzyme is enhanced in the membranes from Syrian Golden strain more than in those from UM-X7.1 strain. The cholesterol content of sarcolemmal membranes is higher in the cardiomyopathic strain than in the Syrian Golden hamsters. A possible relation between changes of the membrane lipid composition and of the ethanolamine base exchange activity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dhalla NS, Pierce GN: Isolation and characterization of the sarcolemmal membrane from the heart. In: NS Dhalla (ed.) Methods in Studying Cardiac Membranes, vol. 1. CRC Press, Boca Raton, Florida, USA, 1984, pp 3–18

    Google Scholar 

  2. Dhalla NS, Pierce GN, Ganguly PK: Methods for measuring Ca2+ transport in cardiac subcellular membrane fractions. In: NS Dhalla (ed.) Methods in Studying Cardiac Membranes, vol. 1. CRC Press, Boca Raton, Florida, USA, 1984, pp 135–146

    Google Scholar 

  3. Tanaka R, Strickland KP: Role of phospholipids in the activation of (Na+, K+)-activated adenosine triphosphatase from rat kidney and brain. Arch Biochem Biophys 111: 583–592, 1965

    Article  CAS  PubMed  Google Scholar 

  4. Palatini P, Dabbeni-Sala A, Bruni A: Reactivation of a phospholipid-depleted sodium, potassium-stimulated ATPase. Biochim Biophys Acta 288: 413–422, 1972

    CAS  PubMed  Google Scholar 

  5. Kimelberg HK, Papahadjopoulos D: Effect of phospholipid acyl chain fluidity, phase transitions, and cholesterol on (Na+ + K+)-stimulated adenosine triphosphatase. J Biol Chem 249: 1071–1080, 1974

    CAS  PubMed  Google Scholar 

  6. Fenster LJ, Copenhaver Jr JH: Reconstitution of an efficient calcium pump without detergents. Biochim Biophys Acta 137: 406–408, 1967

    CAS  PubMed  Google Scholar 

  7. Palatini P, Dabbeni-Sala F, Pitotti A, Bruni A, Mandersloot JC: Activation of (Na+ + K+)-dependent ATPase by lipid vesicles of negative phospholipids. Biochim Biophys Acta 466: 1–9, 1977

    CAS  PubMed  Google Scholar 

  8. Niggli V, Penniston JT, Carafoli E: Purification of the (Ca2+-Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem 254: 9955–9958, 1979

    CAS  PubMed  Google Scholar 

  9. Carafoli E, Zurini M: The Ca2+-pumping ATPase of plasma membranes. Purification, reconstitution and properties. Biochim Biophys Acta 683: 279–301, 1982

    CAS  PubMed  Google Scholar 

  10. Caroni P, Zurini M, Clark A, Carafoli E: Further characterization and reconstitution of the purified Ca2+-pumping ATPase of heart sarcolemma. J Biol Chem 258: 7305–7310, 1983

    CAS  PubMed  Google Scholar 

  11. Racher E, Eytan E: Reconstitution of an efficient calcium pump without detergents. Biochem Biophys Res Commun 55: 174–178, 1973

    Google Scholar 

  12. Hattori H, Kanfer JN: Effects of base exchange reaction on the Na+, K+ ATPase in rat brain microsomes. Neurochem Res 8: 1185–1195, 1983

    Article  CAS  PubMed  Google Scholar 

  13. Hattori H, Kanfer JN: The base-exchange enzyme activity of sarcolemma and sarcoplasmic reticulum from rat heart. Biochim Biophys Acta 835: 542–548, 1985

    CAS  PubMed  Google Scholar 

  14. Shug AL, Paulson DJ: Fatty acids and carnitine-linked abnormalities during ischemia and cardiomyopathy. In: R. Ferrari, AM Katz, A. Shug, O Visioli (eds) Myocardial Ischemia and Lipid Metabolism. Plenum Press, New York, 1984, p 203

    Google Scholar 

  15. Okumura K, Panagia V, Jasmin G, Dhalla NS: Sarcolemmal phospholipid N-methylation in genetically determined hamster cardiomyopathy. Biochem Biophys Res Commun 143: 31–37, 1987

    CAS  PubMed  Google Scholar 

  16. Borowski IFM, Harrow JAC, Pritchard ET, Dhalla NS: Changes in electrolyte and lipid contents of the myopathic hamster (UM-X7.1) skeletal and cardiac muscle. Res Commun Chem Pathol Pharmacol 7: 443–451, 1974

    CAS  PubMed  Google Scholar 

  17. Ganguly PK, Panagia V, Dhalla NS: Sarcolemmal phosphatidylethanolamine N-methylation in diabetic cardiomyopathy. Circ Res 55: 504–512, 1984

    CAS  PubMed  Google Scholar 

  18. Okumura K, Panagia V, Beamish RE, Dhalla NS: Biphasic changes in the sarcolemmal phosphatidylethanolamine N-methylation activity in catecholamine-induced cardiomyopathy. J Mol Cell Cardiol 19: 357–366, 1987

    CAS  PubMed  Google Scholar 

  19. Whitmer JT, Kumar P, Solaro RJ: Calcium transport properties of cardiac sarcoplasmic reticulum from cardiomyopathic Syrian hamsters (BIO 53.58 and 14.6): evidence for a quantitative defect in dilated myopathic hearts. Circ Res 62: 81–85, 1988

    CAS  PubMed  Google Scholar 

  20. Bajusz E, Jasmin G: Hereditary disease model of congestive cardiomyopathy: Studies on a new line of Syrian Hamsters. Fed Proc 31: 621–628, 1972

    Google Scholar 

  21. Binaglia L, Alunni-Bistocchi G, Orlando M, Orlando P, Rosa G, Trenta R: The synthesis of 1,2-dioleoyl-sn[2-3H]glycero-3-phosphoserine. J Lab Comp Radiopharm 29: 95–101, 1991

    CAS  Google Scholar 

  22. Pitts BJR: Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. J Biol Chem 254: 6232–6235, 1979

    CAS  PubMed  Google Scholar 

  23. Caroni P, Carafoli E: The Ca2+-pumping ATPase of heart sarcolemma. Characterization, calmodulin-dependence and partial purification. J Biol Chem 256: 3263–3270, 1981

    CAS  PubMed  Google Scholar 

  24. Butler M, Morell P: The role of phosphatidylserine decarboxylase in brain phospholipid metabolism. J Neurochem 41: 1445–1454, 1983

    CAS  PubMed  Google Scholar 

  25. Kanoh H, Ohno K: 1,2-diacylglycerol:CDP-choline cholinephosphotransferase. In: JM Lowenstein (ed.) Methods Enzymol. Academic Press, New York, 1981, vol 71, pp 536–546

    Google Scholar 

  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275, 1951

    CAS  PubMed  Google Scholar 

  27. Folch J, Lees M, Sloane-Stanley GM: A simplified method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497–509, 1957

    CAS  PubMed  Google Scholar 

  28. Vecchini A, Roberti R, Freysz L, Binaglia L: Partial purification of ethanolaminephosphotransferase from rat brain microsomes. Biochim Biophys Acta 918: 40–47, 1987

    CAS  PubMed  Google Scholar 

  29. Horrocks LA: The alk-1-enyl group content of mammalian myelin phosphoglycerides by quantitative two-dimensional thin layer chromatography. J Lipid Res 9: 469–472, 1968

    CAS  PubMed  Google Scholar 

  30. Baykov AA, Evtushenko OA, Avaeva SM: A malachite green procedure for ortophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal Biochem 171: 266–270, 1988

    CAS  PubMed  Google Scholar 

  31. Mascini M, Moscone D, Palleschi G: Determination of free and total cholesterol in human bile samples using enzyme electrodes. Clin Chim Acta 132: 7–15, 1983

    Article  CAS  PubMed  Google Scholar 

  32. Panagia V, Singh JN, Anand-Srivastava MB, Pierce GN, Jasmin G, Dhalla NS: Sarcolemmal alterations during the development of genetically determined cardiomyopathy. Cardiovasc Res 18: 567–572, 1984

    CAS  PubMed  Google Scholar 

  33. Zelinski TA, Savard JD, Man YK, Choy PC: Phosphatidylcholine biosynthesis in isolated hamster heart. J Biol Chem 255: 11423–11428, 1980

    CAS  PubMed  Google Scholar 

  34. Zelinski TA, Choy PC: Phosphatidylethanolamine biosynthesis in isolated hamster hearts. Can J Biochem 60: 817–823, 1982

    CAS  PubMed  Google Scholar 

  35. Coleman R: Membrane-bound enzymes and membrane ultrastructure. Biochim Biophys Acta 300: 1–30, 1973

    CAS  PubMed  Google Scholar 

  36. Sanderman H: Regulation of membrane enzymes by lipids. Biochim Biophys Acta 515: 209–237, 1978

    Google Scholar 

  37. Lossnitzer K, Bajusz E: Water and electrolyte alterations during the life course of the BIO 14.6 Syrian golden hamster. A disease model of hereditary cardiomyopathy. J Mol Cell Cardiol 6: 163–177, 1974

    Article  CAS  PubMed  Google Scholar 

  38. Hano O, Mitsuoka T, Matsumoto Y, Ahmed R, Hirata M, Hirata T, Mori M, Yano K, Hashiba K: Arrhythmogenic properties of the ventricular myocardium in cardiomyopathic Syrian hamster, BIO 14.6 strain. Cardiovasc Res 25: 49–57, 1991

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vecchini, A., Binaglia, L., Di Nardo, P. et al. Phospholipid base exchange enzyme activity in sarcolemmal membranes from the heart of cardiomyopathic hamsters. Mol Cell Biochem 110, 47–54 (1992). https://doi.org/10.1007/BF02385005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02385005

Key words

Navigation