Skip to main content
Log in

In vitro effects of reactive O2 species on the β-receptor-adenylyl cyclase system

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The irreversible loss of activity of the sarcolemma-localized β-receptor-adenylyl cyclase system (β-RAS) in myocardial ischemia is a well documented phenomenon. Alterations in the sarcolemma (SL) induced by reactive O2 species could be responsible for this loss. Therefore the influence of oxidation of SH-groups and lipid peroxidation induced by Fe2+/Vit. C on the β-RAS activity was studied. During incubation of SL with Fe2+/Vit. C a transient enhancement followed by a continuous loss of the β-RAS activity (isoprenaline-, NaF-, Gpp(NH)p-, forskolin-stimulated and basal activity) was observed. In contrast there occurred a continuous loss of SH-groups and lipid peroxidation, beginning immediately after the start of incubation. Loss of SH-groups and lipid peroxidation as well as changes in the β-RAS did not take place in the presence of the antioxidant t-Butyl-4-hydroxyanisole (BHA) or the Fe2+-chelator EGTA. In view of the known ischemia-induced formation of reactive O2 species our results show that these powerful oxidants could contribute to the modulation of the β-RAS during myocardial ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BHA:

t-Butyl-4-Hydroxyanisole

DTNB:

5,5′-Dithio-bis-(2-nitrobenzoic acid)

DTT:

Dithiothreitol

EGTA:

Ethyleneglycol-bis-(2-amino-ethylether)-N,N,N,N′-Tetraacetic Acid

Gpp(NH)p:

Guanylylimidodiphosphate

HSA:

Human Serum Albumine

PMSF:

Phenylmethylsulfonyl Fluoride

β-RAS:

β-Receptor-Adenylyl cyclase System

SDS:

Sodium Dodecylsulfate

TRIS:

Tris(hydroxymethyl)-aminomethane

SL:

Sarcolemma

References

  1. Levey GS: Solubilization of myocardial adenyl cyclase: Loss of hormone responsiveness and activation by phospholipids. Ann New York Acad Sci 185: 449–457, 1971

    CAS  Google Scholar 

  2. Levey GS: Phospholipids, adenylate cyclase, and heart. J Mol Cell Cardiol 4: 283–285, 1972

    Article  CAS  PubMed  Google Scholar 

  3. Sinha AK, Shattil SJ, Colman RW: Cyclic AMP metabolism in cholesterol-rich platelets. J Biol Chem 252: 3310–3314, 1977

    CAS  PubMed  Google Scholar 

  4. Brivio-Haugland RP, Louis SL, Musch K, Waldeck N, Williams MA: Liver plasma membranes from essential fatty acid-deficient rats. Isolation, fatty acid composition, and activities of 5′-nucleotidase, ATPase and adenylate cyclase. Biochim Biophys Acta 433: 150–163, 1976

    CAS  PubMed  Google Scholar 

  5. Will-Shahab L, Krause EG, Bartel S, Schulze W, Küttner I: Reversible inhibition of adenylate cyclase activity in the ischemic myocardium. J Cardiovasc Pharmacol 7 (suppl 3): 23–27, 1985

    Google Scholar 

  6. Zweier JL: Measurement of superoxide-derived free radicals in the reperfused heart. J Biol Chem 263: 1353–1357, 1988

    CAS  PubMed  Google Scholar 

  7. Baker JE, Felix CC, Olinger GN, Kalyanaraman B: Myocardial ischemia and reperfusion: Direct evidence for free radical generation by electron spin resonance spectroscopy. Proc Natl Acad Sci USA 85: 2786–2789, 1988

    CAS  PubMed  Google Scholar 

  8. Röth E, Törok B, Zsoldos T, Matkovics B: Lipid peroxidation and scavenger mechanism in experimentally induced heart infarcts. Basic Res Cardiol 80: 530–536, 1986

    Google Scholar 

  9. Schimke I, Kahl PE, Romaniuk P, Papies B: Konzentration Thiobarbitursäure-reaktiver Substanzen (TBARS) im Serum nach Myokardinfarkt. Klin Wochenschr 64: 1237–1239, 1986

    Article  CAS  PubMed  Google Scholar 

  10. Kühl PW: A redox cycling model for the action of β-adrenoceptor agonists. Experientia 41: 1118–1122, 1985

    PubMed  Google Scholar 

  11. Vetter R, Haase H, Will H: Potentiating effect of calmodulin and catalytic subunit of cyclic AMP-dependent protein kinase on ATP-dependent calcium ion transport by cardiac sarcolemma. FEBS Lett 148: 326–333, 1982

    Article  CAS  PubMed  Google Scholar 

  12. Ohkawa H, Ohishi N, Yagi K: Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351–358, 1978

    Google Scholar 

  13. Habeeb AFS: Reaction of protein sulfhydryl groups with Ellman's reagent. Meth Enzymol 25: 457–464, 1972

    CAS  Google Scholar 

  14. Ramachandran JA: A new simple method for separation of adenosine 3′,5′ cyclic monophosphate from other nucleotides and its use in the assay of adenylate cyclase. Anal Biochem 43: 227–236, 1971

    Article  CAS  PubMed  Google Scholar 

  15. Lowry OH, Rosebrough NJ, Farr AI, Randall RJ: Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–271, 1951

    CAS  PubMed  Google Scholar 

  16. Chambers DE, Parks DA, Patterson G, Roy R, McCord JM, Yoshida S, Parmley LP, Downey JM: Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Mol Cell Cardiol 17: 145–152, 1985

    CAS  PubMed  Google Scholar 

  17. Schimke I, Schimke E, Papies B, Moritz V: Importance of the antioxidative potential for free radical induced heart damage. Biomed Biochim Acta 46 (suppl): 576–579, 1987

    Google Scholar 

  18. Kramer JH, Mak IT, Weglicki WB: Differential sensitivity of canine cardiac sarcolemmal and microsomal enzymes to inhibition by free radical-induced lipid peroxidation. Circul Res 55: 120–124, 1984

    CAS  Google Scholar 

  19. Buege J, Aust SD: Microsomal lipid peroxidation. Meth Enzymol 53: 302–310, 1978

    Google Scholar 

  20. Ursini F, Maiorino M, Valente M, Ferri I, Gregolin G: Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochem Biophys Acta 710: 197–211, 1982

    CAS  PubMed  Google Scholar 

  21. Haenen GRMM, Veerman M, Bast A: Reduction of β-adrenoceptor function by oxidative stress in the heart. Free Rad Biol Med 9: 279–288, 1990

    Article  CAS  PubMed  Google Scholar 

  22. Heikkila RE: Ascorbate-induced lipid peroxidation and the binding of (3H)-dihydroalprenolol. Eur J Pharmacol 93: 79–85, 1983

    Article  CAS  PubMed  Google Scholar 

  23. Palmer GC: Free radicals generated by xanthine oxidase-hypoxanthine damage adenylate cyclase and ATPase in gerbil cerebral cortex. Metabolic Brain Disease 2: 243–257, 1987

    Article  CAS  PubMed  Google Scholar 

  24. Baba A, Lee E, Ohta A, Tatsuno T, Iwata H: Activation of adenylate cyclase of rat brain by lipid peroxidation. J Biol Chem 256: 3679–3684, 1981

    CAS  PubMed  Google Scholar 

  25. Paradisi L, Parangini C, Parola M, Barreva G, Dianzani MU: Effects of 4-hydroxynonenal on adenylate cyclase and 5′-nucleotidase activities in rat liver plasma membranes. Chem-Biol Interactions 53: 209–217, 1985

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schimke, I., Haberland, A., Will-Shahab, L. et al. In vitro effects of reactive O2 species on the β-receptor-adenylyl cyclase system. Mol Cell Biochem 110, 41–46 (1992). https://doi.org/10.1007/BF02385004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02385004

Key words

Navigation