Arkiv för Matematik

, 30:93 | Cite as

On the spectral synthesis property and its application to partial differential equations

  • Kanghui Guo


LetM be a (n−1)-dimensional manifold inR n with non-vanishing Gaussian curvature. Using an estimate established in the early work of the author [4], we will improve the known result of Y. Domar on the weak spectral synthesis property by reducing the smoothness assumption upon the manifoldM. Also as an application of the method, a uniqueness property for partial differential equations with constant coefficients will be proved, which for some specific cases recovers or improves Hörmander's general result.


Partial Differential Equation Dimensional Manifold Lorentz Space Smoothness Assumption Spectral Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Domar, Y., Sur la synthèse harmonique des courbes deR 2,C. R. Acad. Sci. Paris 270 (1970), 875–878.MathSciNetMATHGoogle Scholar
  2. 2.
    Domar, Y., On the spectral synthesis problem for (n−1)-dimensional subsets ofR n,n≧2,Ark. Mat. 9 (1971), 23–37.CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Domar, Y., On the spectral synthesis inR n,n≧2,Euclidean harmonic analysis, Proc. 1979 (J. J. Benedetto, ed.)Lecture Notes in Math.,779, Springer-Verlag, Berlin, Heidelberg, New York, 1979, 46–72.Google Scholar
  4. 4.
    Guo, K., On thep-approximate property for hypersurfaces ofR n,Math. Proc. Cambridge Philos. Soc. 105 (1989), 503–511.MathSciNetMATHGoogle Scholar
  5. 5.
    Herz, G., Spectral synthesis for the circle,Ann. of Math. 68 (1958), 709–712.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Hörmander, L., Oscillatory integrals and multipliers onFL p, Ark. Mat.11 (1973), 1–11.CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Hörmander, L., Lower bounds at infinity for solutions of differential equations with constant coefficients,Israel J. Math. 16 (1973), 103–116.CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Hunt, R. A., On theL(p, q) spaces,Enseign. Math. 12 (1966), 248–275.Google Scholar
  9. 9.
    Kenig, C. E., Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation,Harmonic analysis and partial differential equations, Proc. 1987 (J. Garcia-Cuerva, ed.),Lecture Notes in Math. 1384, Springer-Verlag, Berlin, Heidelberg, New York, 1989, 69–90.Google Scholar
  10. 10.
    Littman, W., Fourier transforms of surface-carried measures and differentiability of surface averages,Bull. Amer. Math. Soc. 69 (1963), 766–770.CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Müller, D., On the spectral synthesis problem for hypersurfaces ofR N,J. Funct. Anal. 42 (1982), 247–280.CrossRefGoogle Scholar
  12. 12.
    Schwartz, L., Sur une propriété de synthèse spectrale dans les groupes non compacts,C. R. Acad. Sci. Paris 227 (1948), 424–426.MathSciNetMATHGoogle Scholar
  13. 13.
    Varopoulos, N. Th., Spectral synthesis on spheres,Proc. Cambridge Philos. Soc. 62 (1966), 379–387.MathSciNetCrossRefGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1992

Authors and Affiliations

  • Kanghui Guo
    • 1
  1. 1.Department of MathematicsSouthwest Missouri State UniversitySpringfieldU.S.A.

Personalised recommendations