Advertisement

Arkiv för Matematik

, Volume 30, Issue 1–2, pp 1–24 | Cite as

Realization of the invariant inner products on the highest quotients of the composition series

  • Jonathan Arazy
Article

Keywords

Haar Measure Bergman Kernel Hankel Operator Dirichlet Space Composition Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.
    Arazy, J.,A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, report No. 19, 1990/91, Mittag-Leffler Institute.Google Scholar
  2. AF.
    Arazy, J. andFisher, S. D.,Invariant Hilbert spaces of analytic functions on bounded symmetric domains, preprint, 1990.Google Scholar
  3. AFJP1.
    Arazy, J., Fisher, S. D., Janson, S. andPeetre, J., An identity for reproducing kernels in a planar domain and Hilbert-Schmidt Hankel operators,J. Reine Angew. Math. 406 (1990), 179–199.MATHMathSciNetGoogle Scholar
  4. AFJP2.
    Arazy, J., Fisher, S. D., Janson, S. andPeetre, J., Membership of Hankel operators on the ball in unitary ideals,J. London Math. Soc. 43 (1991), 485–508.MATHCrossRefMathSciNetGoogle Scholar
  5. AFP.
    Arazy, J., Fisher, S. D. andPeetre, J., Hankel operators on weighted Bergman spaces,Amer. J. Math. 110 (1988), 989–1054.MATHCrossRefMathSciNetGoogle Scholar
  6. B.
    Berezin, F. A., Quantization in complex symmetric spaces,Math. USSR Izvestija,9 (1975), 341–379.CrossRefGoogle Scholar
  7. BCZ.
    Berger, C. A., Coburn, L. A. andZhu, K. H., Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus,Amer. J. Math. 110 (1988), 921–953.MATHCrossRefMathSciNetGoogle Scholar
  8. FK1.
    Faraut, J. andKoranyi, A., Fonctions hypergéométriques associées aux cônes symmetricques,C. R. Acad. Sci. Paris 307 Ser. I, (1988), 555–558.MATHMathSciNetGoogle Scholar
  9. FK.
    Faraut, J. andKoranyi, A., Function spaces and reproducing kernels on bounded symmetric domains,J. Func. Analysis 88 (1990), 64–89.MATHCrossRefMathSciNetGoogle Scholar
  10. H.
    Hua, L. K., Harmonic analysis of functions of several complex variables in the classical domains, Amer. Math. Soc., Providence, R. I., 1963.Google Scholar
  11. IS.
    Isidro, J. M. andStachó, L. L.,Holomorphic automorphism groups in Banach spaces: An elementary introduction, North Holland Mathematical Studies No. 105, North, Holland, Amsterdam, 1985.MATHGoogle Scholar
  12. K.
    Koranyi, A., Personal communications.Google Scholar
  13. Ø.
    Ørsted, B., Composition series for analytic continuations of holomorphic discrete series representations ofSU (n, n), Trans. Amer. Math. Soc. 206 (1980), 563–573.CrossRefGoogle Scholar
  14. P.
    Peetre, J.,Analytic continuation of norms, manuscript, 1986.Google Scholar
  15. Pe.
    Peloso, M., Möbius invariant spaces on the unit ball, to appear inMichigan Math. J.Google Scholar
  16. S.
    Schmid, W., Die Randwerte holomorpher Funktionen auf hermitischen Räumen,Invent. Math. 9 (1969), 61–80.MATHCrossRefMathSciNetGoogle Scholar
  17. U1.
    Upmeier, H., Jordan algebras and harmonic analysis on symmetric spaces,Amer. J. Math. 108 (1986), 1–25.MATHCrossRefMathSciNetGoogle Scholar
  18. U2.
    Upmeier, H.,Weyl quantization of symmetric spaces (I): hyperbolic matrix domains, preprint, 1989.Google Scholar
  19. Y.
    Yan, Z.,Möbius transformations on bounded symmetric domains of tube type, preprint, 1990.Google Scholar
  20. Z.
    Zhu, K. H., Möbius invariant Hilbert spaces of holomorphic functions in the unit ball of Cn,Trans. Am. Math. Soc. 323 (1991), 823–842.MATHCrossRefGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1992

Authors and Affiliations

  • Jonathan Arazy
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of HaifaHaifaIsrael
  2. 2.Department of MathematicsUniversity of KansasLawrenceU.S.A.

Personalised recommendations