Arkiv för Matematik

, Volume 10, Issue 1–2, pp 277–292 | Cite as

Ideal theory on non-orientable Klein surfaces

  • Norman L. Alling
  • Balmohan V. Limaye
Article
  • 30 Downloads

Keywords

Invariant Subspace Ideal Theory Betti Number Blaschke Product Closed Ideal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahern, P. R., &Sarason, D., TheH p-spaces of a class of function algebras.Acta Math. 117 (1967), 123–163.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alling, N. L., &Greenleaf, N., Klein surfaces and real algebraic function fields.Bull. Amer. Math. Soc. 75 (1969), 869–872.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alling, N. L., Real Banach algebras and non-orientable Klein surfaces I.J. Reine Angew. Math. 241 (1970), 200–208.MATHMathSciNetGoogle Scholar
  4. 4.
    —, Analytic and harmonic, obstruction on non-orientable Klein surfaces.Pacific J. Math. 36 (1971), 1–19.MATHMathSciNetGoogle Scholar
  5. 5.
    —, &Campbell, L. A., Real Banach algebras II.Math. Z. 125 (1972), 79–100.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Klein, F.,Über Riemanns Theorie der algebraischen Functionen und ihrer Integrale. Leipzig (1882).Google Scholar
  7. 7.
    Limaye, B. V.,Ideals of analytic functions. Ph.D. Thesis, Rochester (1968).Google Scholar
  8. 8.
    —, Blaschke products for finite Riemann surfaces.Studia Math. 34 (1970), 169–176.MATHMathSciNetGoogle Scholar
  9. 9.
    —, On the inner parts of certain analytic functions.Ann. Polon. Math. 26 (1972), 291–300.MathSciNetGoogle Scholar
  10. 10.
    Rudin, W., The closed ideals in an algebra of continuous functions.Canad. J. Math. 9 (1957), 426–434.MATHMathSciNetGoogle Scholar
  11. 11.
    Stanton, C. M., The closed ideals in a function algebra.Trans. Amer. Math. Soc. 154 (1971), 289–300.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Voichik, M., Ideals and invariant subspaces of analytic functions.Trans. Amer. Math. Soc. 111 (1964), 493–512.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Wermer, J., Subalgebras of the algebra of all complex-valued continuous functions on the circle.Amer. J. Math. 78 (1956), 225–242.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    —, Analytic disks in maximal ideal spaces.Amer. J. Math. 86 (1964), 161–170.CrossRefMathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1972

Authors and Affiliations

  • Norman L. Alling
    • 1
  • Balmohan V. Limaye
    • 2
  1. 1.University of RochesterRochesterU.S.A.
  2. 2.Tata Institute of Fundamental ResearchBombayIndia

Personalised recommendations