Arkiv för Matematik

, Volume 10, Issue 1–2, pp 79–98 | Cite as

Eigenfunction expansions for partially hypoelliptic operators

  • Lars-Christer Böiers


Compact Subset Fundamental Solution Eigenfunction Expansion Spectral Resolution Tauberian Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergendal, G., Convergence and summability of eigenfunction expansions connected with elliptic differential operators.Medd. Lunds Univ. Mat. Sem. 15 (1959).Google Scholar
  2. 2.
    Gårding, L. &Malgrange, B., Opérateurs différentiels partiellement hypoelliptiques et partiellement elliptiques.Math. Scand. 9 (1961), 5–21.MATHMathSciNetGoogle Scholar
  3. 3.
    Hörmander, L., On interior regularity of the solutions of partial differential equations.Comm. Pure Appl. Math. 11 (1958), 197–218.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    —,Linear partial differential operators. Springer, Berlin, 1963.MATHGoogle Scholar
  5. 5.
    Keldyš, M. V., On a Tauberian theorem.Trudy Mat. Inst. Steklov 38 (1951), 77–86.Google Scholar
  6. 6.
    Nilsson, N., Essential self-adjointness and the spectral resolution of Hamiltonian operators.Kungl. Fysiogr. Sällsk. i Lund Förh. 29 (1959), 1–19.MathSciNetGoogle Scholar
  7. 7.
    —, Some estimates for eigenfunction expansions and spectral functions corresponding to elliptic differential operators.Math. Scand. 9 (1961), 107–121.MATHMathSciNetGoogle Scholar
  8. 8.
    —, Asymptotic estimates for spectral functions connected with hypoelliptic differential operators.Ark. Mat. 5 (1965), 527–540.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Selander, T., Bilateral Tauberian theorems of Keldyš type.Ark. Mat. 5 (1963), 85–96.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Sz-Nagy, B.,Spektraldarstellung linearer Transformationen des Hilbertschen Raumes. Springer, Berlin, 1942.Google Scholar

Copyright information

© Institut Mittag-Leffler 1972

Authors and Affiliations

  • Lars-Christer Böiers
    • 1
    • 2
  1. 1.University of LundLundSweden
  2. 2.Matematiska InstitutionenLund 7Sweden

Personalised recommendations