Arkiv för Matematik

, 12:221 | Cite as

On a theorem of A. C. Offord and its analogue for Fourier series

  • G. P. Névai
Article
  • 25 Downloads

Keywords

Fourier Series Trigonometric Polynomial Absolute Constant Arbitrary Sequence Lebesgue Point 

References

  1. 1.
    Bernstein, S., On trigonometric interpolation by method of least squares (in Russian),Dokl. Akad. Nauk SSSR 4 (1934), 1–8.Google Scholar
  2. 2.
    Chen, Y.-M., A remarkable divergent Fourier series,Proc. Japan Acad. 38 (1962), 239–244.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Faddeev, D. K., On representation of summable functions by singular integrals at the Lebesgue points (in Russian),Mat. Sb. 1 (43), (1936), 351–368.MATHGoogle Scholar
  4. 4.
    Grunwald, G., Über Divergenzerscheinungen der Lagrangeschen Interpolationspolynome,Acta Sci. Math. (Szeged), 7 (1935), 207–221.Google Scholar
  5. 5.
    Kolmogorov, A. N., Un série de Fourier-Lebesgue divergente partout,C. R. Acad. Sci. Paris 183 (1926), 1327–1328.Google Scholar
  6. 6.
    Lanczos, C.,Discourse on Fourier Series, Oliver and Boyd, Edinburgh and London, 1966.MATHGoogle Scholar
  7. 7.
    Marcinkiewicz, J., Interpolating polynomials for absolutely continuous functions (in Polish),Wiadom. Mat. 39 (1935), 85–115.MATHGoogle Scholar
  8. 8.
    —, Sur la sommabilité forte de séries de Fourier,J. London Math. Soc. 14 (1939), 22–34.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Offord, A. C., Approximation to functions by trigonometric polynomials,Duke Math. J. 6 (1940), 505–510.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Róna, G., A theorem on trigonometric interpolation (in Hungarian),Mat. Lapok 19 (1968), 363–365.MathSciNetGoogle Scholar
  11. 11.
    Zygmund, A.,Trigonometric Series, vol. I–II, Cambridge, University Press, 1959.Google Scholar

Copyright information

© Institut Mittag-Leffler 1974

Authors and Affiliations

  • G. P. Névai
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapest

Personalised recommendations