Skip to main content
Log in

Approximation in Sobolev spaces of nonlinear expressions involving the gradient

  • Published:
Arkiv för Matematik

Abstract

We investigate a problem of approximation of a large class of nonlinear expressionsf(x, u, ∇u), including polyconvex functions. Hereu: Ω→R m, Ω⊂R n, is a mapping from the Sobolev spaceW 1,p. In particular, whenp=n, we obtain the approximation by mappings which are continuous, differentiable a.e. and, if in additionn=m, satisfy the Luzin condition. From the point of view of applications such mappings are almost as good as Lipschitz mappings. As far as we know, for the nonlinear problems that we consider, no natural approximation results were known so far. The results about the approximation off(x, u, ∇u) are consequences of the main result of the paper, Theorem 1.3, on a very strong approximation of Sobolev functions by locally weakly monotone functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E. andFusco, N., An approximation lemma forW 1,p functions, inMaterial Instabilities in Continuum Mechanics (Edinburgh, 1985–1986) (Ball, J. M., ed.), pp. 1–5, Oxford Univ. Press, Oxford, 1988.

    Google Scholar 

  2. Ball, J., Convexity conditions and existence theorems in nonlinear elasticity,Arch. Rational Mech. Anal. 63 (1977), 337–403.

    MATH  Google Scholar 

  3. Ball, J., Global invertibility of Sobolev functions and interpretation of the matter,Proc. Roy. Soc. Edinburgh Sect. A 88 (1988), 315–328.

    Google Scholar 

  4. Bojarski, B., Pointwise differentiability of weak solutions of elliptic divergence type equations,Bull. Polish Acad. Sci. Math. 33 (1985), 1–6.

    MATH  MathSciNet  Google Scholar 

  5. Bojarski, B. andHajłasz, P., Pointwise inequalities for Sobolev functions and some applications,Studia Math. 106 (1993), 77–92.

    MathSciNet  Google Scholar 

  6. Bojarski, B. andIwaniec, T., Analytical foundations of the theory of quasiconformal mappings inR n,Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 257–324.

    MathSciNet  Google Scholar 

  7. Courant, R.,Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces, Interscience Publ., New York, 1950.

    Google Scholar 

  8. Dacorogna, B.,Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  9. Esteban, M., A direct variational approach to Skyrme’s model for meson fields,Comm. Math. Phys. 105 (1986), 571–591.

    Article  MATH  MathSciNet  Google Scholar 

  10. Esteban, M., A new setting for Skyrme’s problem, inVariational Methods (Paris, 1988) (berestycki, H., Coron, J.-M. and Ekeland, I., eds.), Birkhäuser, Basel-Boston, 1990.

    Google Scholar 

  11. Esteban, M. andMüller, S., Sobolev maps with the integer degree and applications to Skyrme’s problem,Proc. Roy. Soc. London Ser. A 436 (1992), 197–201.

    MathSciNet  Google Scholar 

  12. Evans, L. C. andGariepy, R. F.,Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, Fla., 1992.

    Google Scholar 

  13. Federer, H.,Geometric Measure Theory, Springer-Verlag, Berlin-Heidelberg, 1969.

    Google Scholar 

  14. De Figueiredo, D. G.,Lectures on the Ekeland Variational Principle with Applications and Detours, Tata Institute of Fundamental Research Lectures on Math. and Phys.813, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  15. Fonseca, I. andGangbo, W.,Degree Theory in Analysis and Applications, Oxford Univ. Press, Oxford, 1995.

    Google Scholar 

  16. Fonseca, I. andMalý, J., Remarks on the determinant in nonlinear elasticity and fracture mechanics, inApplied Nonlinear Analysis (Sequiera, A., da Veiga, H. B. and Videman, J. H., eds.), pp. 117–132, Kluwer and Plenum, New York, 1999.

    Google Scholar 

  17. Giaquinta, M., Modica, M. andSouček, J., Cartesian currents and variational problems for mappings into spheres,Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (1989), 393–485.

    MathSciNet  Google Scholar 

  18. Giaquinta, M., Modica, M. andSouček, J., Graphs of finite mass which cannot be approximated in area by smooth graphs,Manuscripta Math. 78 (1993), 259–271.

    MathSciNet  Google Scholar 

  19. Giaquinta, M., Modica, M. andSouček, J.,Cartesian Currents in the Calculus of Variations. I. Cartesian Currents, Springer-Verlag, Berlin, 1998.

    Google Scholar 

  20. Gol’dshte in, V. M. andVodop’yanov, S. K., Quasiconformal mappings and spaces of functions with generalized first derivatives,Sibirsk. Mat. Zh. 17 (1976), 515–531, 715 (Russian). English transl.:Siberian Math. J. 17 (1976), 399–411.

    Google Scholar 

  21. Hajłasz, P., Change of variables formula under minimal assumptions,Colloq. Math. 64 (1993), 93–101.

    MathSciNet  Google Scholar 

  22. Hajłasz, P., A note on weak approximation of minors,Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), 415–424.

    Google Scholar 

  23. Hajłasz, P., Sobolev spaces on an arbitrary metric space,Potential Anal. 5 (1996), 403–415.

    MathSciNet  Google Scholar 

  24. Hajłasz, P. andKinnunen, J., Hölder quasicontinuity of Sobolev functions on metric spaces,Rev. Mat. Iberoamericana 14 (1998), 601–622.

    MathSciNet  Google Scholar 

  25. Hajłasz, P. andMalý, J., In preparation.

  26. Hajłasz, P. andStrzelecki, P., On the differentiability of solutions of quasilinear elliptic equations,Colloq. Math. 64 (1993), 287–291.

    MathSciNet  Google Scholar 

  27. Heinonen, J., Kilpeläinen, T. andMartio, O.,Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Univ. Press, Oxford, 1993.

    Google Scholar 

  28. Heinonen, J. andKoskela P., Sobolev mappings with integrable dilatations,Arch. Rational Mech. Anal. 125 (1993), 81–97.

    Article  MathSciNet  Google Scholar 

  29. Iwaniec, T., Koskela, P. andOnninen, J., Mappings of finite distortion: monotonicity and continuity,Invent. Math. 144 (2001), 507–531.

    Article  MathSciNet  Google Scholar 

  30. Ježková, J. [Björn, J.], Boundedness and pointwise differentiability of weak solutions to quasi-linear elliptic equations and variational inequalities,Comment. Math. Univ. Carolin. 35 (1994), 63–80.

    MathSciNet  Google Scholar 

  31. Jost, J.,Riemannian Geometry and Geometric Analysis, 2nd ed., Springer-Verlag, Berlin, 1998.

    Google Scholar 

  32. Karch, G. andRicciardi, T., Note on Lorentz spaces and differentiability of weak solutions to elliptic equations,Bull. Polish Acad. Sci. Math. 45 (1997), 111–116.

    MathSciNet  Google Scholar 

  33. Koskela, P., Manfredi, J. J. andVillamor, E., Regularity theory and traces ofA-harmonic functions,Trans. Amer. Math. Soc. 348 (1996), 755–766.

    Article  MathSciNet  Google Scholar 

  34. Krasnoselski--i, M. A.,Topological Methods in the Theory of Nonlinear Integral Equations, Gosudarstv. Izdat. Tekhn.-Teor. Lit., Moscow, 1956 (Russian). English transl.: MacMillan, New York, 1964.

    Google Scholar 

  35. Kufner, A., John, O. andFučík, S.,Function Spaces, Nordhoff Int. Publ., Leyden, and Academia, Prague, 1977.

    Google Scholar 

  36. Lebesgue, H., Sur le problème de Dirichlet,Rend. Circ. Mat. Palermo 27 (1907), 371–402.

    Google Scholar 

  37. Liu, F. C., A Luzin type property of Sobolev functions,Indiana Univ. Math. J. 26 (1977), 645–651.

    MATH  MathSciNet  Google Scholar 

  38. Malý, J.,L p-approximation of Jacobians,Comment. Math. Univ. Carolin. 32 (1991), 659–666.

    MATH  MathSciNet  Google Scholar 

  39. Malý, J., Hölder type quasicontinuity,Potential Anal. 2 (1993), 249–254.

    Article  MATH  MathSciNet  Google Scholar 

  40. Malý, J., Absolutely continuous functions of several variables,J. Math. Anal. Appl. 231 (1999), 492–508.

    Article  MATH  MathSciNet  Google Scholar 

  41. Malý, J., A simple proof of the Stepanov theorem on differentiability almost everywhere,Exposition. Math. 17 (1999), 59–61.

    MATH  MathSciNet  Google Scholar 

  42. Malý, J. andMartio, O., Lusin’s condition (N) and mappings of the classW 1,n,J. Reine Angew. Math. 458 (1995), 19–36.

    MathSciNet  Google Scholar 

  43. Malý, J. andZiemer, W.,Fine Regularity Properties of Solutions of Elliptic Partial Differential Equations. Mathematical Surveys and Monographs51, Amer. Math. Soc., Providence, R. I., 1997.

    Google Scholar 

  44. Manfredi, J. J., Weakly monotone functions,J. Geom. Anal. 4 (1994), 393–402.

    MATH  MathSciNet  Google Scholar 

  45. Manfredi, J. J. andVillamor, E., Traces of monotone Sobolev functions,J. Geom. Anal. 6 (1996), 433–444.

    MathSciNet  Google Scholar 

  46. Marcus, M. andMizel, V., Transformation by functions in Sobolev spaces and lower semicontinuity for parametric variational problems,Bull. Amer. Math. Soc. 79 (1973), 790–795.

    MathSciNet  Google Scholar 

  47. Martio, O. andZiemer, W., Lusin’s condition (N) and mappings with nonnegative Jacobians,Michigan Math. J. 39 (1992), 495–508.

    MathSciNet  Google Scholar 

  48. Maz’ya, V. G. andShaposhnikova, T. O.,The Theory of Multipliers in Spaces of Differentiable Functions, Pitman, Boston, Mass., 1985.

    Google Scholar 

  49. Meyer-Nieberg, P.,Banach Lattices, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  50. Mostow, G., Quasiconformal mappings inn-space and the rigidity of hyperbolic space forms,Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104.

    MATH  MathSciNet  Google Scholar 

  51. Mucci, D., Approximation in area of graphs with isolated singularities,Manuscripta Math. 88 (1995), 135–146.

    MATH  MathSciNet  Google Scholar 

  52. Mucci, D., Approximation in area of continuous graphs,Calc. Var. Partial Differential Equations 4 (1996), 525–557.

    MATH  MathSciNet  Google Scholar 

  53. Mucci, D., Graphs of finite mass which cannot be approximated by smooth graphs with equibounded area,J. Funct. Anal. 152 (1998), 467–480.

    Article  MATH  MathSciNet  Google Scholar 

  54. Müller, S., Qi, T. andYan, B. S., On a new class of elastic deformations not allowing for cavitation,Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 217–243.

    Google Scholar 

  55. Müller, S. andSpector, S. J., An existence theory for nonlinear elasticity that allows for cavitation,Arch. Rational Mech. Anal. 131 (1995), 1–66.

    Article  MathSciNet  Google Scholar 

  56. Rado, T. andReichelderfer, P. V.,Continuous Transformations in Analysis, Springer-Verlag, Berlin, 1955.

    Google Scholar 

  57. Reshetnyak, Yu. G., The differentiability almost everywhere of the solutions of elliptic equations,Sibirsk. Mat. Zh. 28:4 (1987), 193–196 (Russian). English transl.:Siberian Math. J. 28 (1987), 671–673.

    MATH  MathSciNet  Google Scholar 

  58. Reshetnyak, Yu. G.,Space Mappings with Bounded Distortion. Translations of Math. Monographs73, Amer. Math. Soc., Providence, R. I., 1989.

    Google Scholar 

  59. Schoen, R. andUhlenbeck, K., Approximation theorems for Sobolev mappings,Preprint, 1983.

  60. Stein, E.,Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N. J., 1970.

    Google Scholar 

  61. Stepanov, V., Sur les conditions de l’existence de la différentielle totale,Mat. Sb. 32 (1925), 511–526.

    MATH  Google Scholar 

  62. Strzelecki, P., Pointwise differentiability of weak solutions of parabolic equations with measurable coefficients,Ann. Acad. Sci. Fenn. Ser. A I Math. 17 (1992), 171–180.

    MATH  MathSciNet  Google Scholar 

  63. Strzelecki, P., Pointwise differentiability properties of solutions of quasilinear parabolic equations,Hokkaido Math. J. 21 (1992), 543–567.

    MATH  MathSciNet  Google Scholar 

  64. Šverák, V., Regularity properties of deformations with finite energy,Arch. Rational Mech. Anal. 100 (1988), 105–127.

    MathSciNet  Google Scholar 

  65. Vodop’yanov, S., Mappings with bounded distortion and with finite distortion on Carnot groups,Sibirsk. Mat. Zh. 40 (1999), 764–804 (Russian). English transl.:Siberian Math. J. 40 (1999), 644–678.

    MathSciNet  Google Scholar 

  66. Vodop’yanov, S., Topological and geometric properties of mappings with an integrable Jacobian in Sobolev classes I,Sibirsk. Mat. Zh. 41 (2000), 23–48 (Russian). English transl.:Siberian Math. J. 41 (2000), 19–39.

    MathSciNet  Google Scholar 

  67. White, B., Infima of energy functionals in homotopy classes of mappings,J. Differential Geom. 23 (1986), 127–142.

    MATH  MathSciNet  Google Scholar 

  68. White, B., Homotopy classes in Sobolev spaces and the existence of energy minimizing maps,Acta Math. 160 (1988), 1–17.

    MATH  MathSciNet  Google Scholar 

  69. Ziemer, W.,Weakly Differentiable Functions, Grad. Texts in Math.120, Springer-Verlag, New York, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The first author was supported by KBN grant no. 2-PO3A-055-14, and by a scholarship from the Swedish Institute. The second author was supported by Research Project CEZ J13/98113200007 and grants GAČR 201/97/1161 and GAUK 170/99. This research originated during the stay of both authors at the Max-Planck Institute for Mathematics in the Sciences in Leipzig, 1998, and completed during their stay at the Mittag-Leffler Institute, Djursholm, 1999. They thank the institutes for the support and the hospitality.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajłasz, P., Malý, J. Approximation in Sobolev spaces of nonlinear expressions involving the gradient. Ark. Mat. 40, 245–274 (2002). https://doi.org/10.1007/BF02384536

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02384536

Keywords

Navigation