Arkiv för Matematik

, Volume 25, Issue 1–2, pp 211–219 | Cite as

Entropy and Lorentz-Marcinkiewicz operator ideals

  • Fernando Cobos
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergh, J. andLöfström, J.,Interpolation spaces, an introduction, Springer, Berlin-Heidelberg-New York, 1976.MATHGoogle Scholar
  2. 2.
    Carl, B., Entropy numbers,s-numbers, and eigenvalue problems,J. Funct. Anal. 41 (1981), 290–306.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Carl, B., On a characterization of operators from 1q into a Banach space of type q with some applications to eigenvalue problems,J. Funct. Anal. 48 (1982), 394–407.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Carl, B. andStephani, I., OnA-compact operators, generalized entropy numbers and entropy ideals,Math. Nachr. 119 (1984), 77–95.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Carl, B. andStephani, I., Estimating compactness properties of operators by the aid of generalized entropy numbers,J. Reine Angew. Math. 350 (1984), 117–136.MATHMathSciNetGoogle Scholar
  6. 6.
    Carl B. andTriebel, H., Inequalities between eigenvalues, entropy numbers and related quantities of compact operators in Banach spaces,Math. Ann. 251 (1980), 129–133.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cobos, F., On the Lorentz-Marcinkiewicz operator ideal,Math. Nachr. 126 (1986), 281–300.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gustavsson, J., A function parameter in connection with interpolation of Banach spaces,Math. Scand. 42 (1978), 289–305.MATHMathSciNetGoogle Scholar
  9. 9.
    Kalugina, T. F., Interpolation of Banach spaces with a functional parameter. The reiteration theorem,Mos. Univ. Math. Bull. 30 (6), (1975), 108–116.MATHMathSciNetGoogle Scholar
  10. 10.
    Kühn, T., Entropy numbers ofr-nuclear operators in Banach spaces of typeq, Studia Math. 80 (1984), 53–61.MATHMathSciNetGoogle Scholar
  11. 11.
    Maurey, B. andPisier, G., Séries de variables aléatoires vectorielles indépendantes et propiétés géométriques des espaces de Banach,Studia Math. 58 (1976), 45–90.MATHMathSciNetGoogle Scholar
  12. 12.
    Merucci, C., Interpolation réelle avec paramètre fonctionnel des espacesL p,q, Université de Nantes, Sem. d'Anal. exposé no 17 (1980/81), 350–373.Google Scholar
  13. 13.
    Merucci, C., Interpolation réelle avec paramètre fonctionnel des espacesL p,q,C. R. Acad. Sci. Paris, Sér. I,294 (1982), 653–656.MATHMathSciNetGoogle Scholar
  14. 14.
    Merucci, C., Interpolation réelle avec fonction paramètre: réitération et applications aux espacesΛ(ϕ)(0<p⪳+∞),C. R. Acad. Sci. Paris, Sér.,I,295 (1982), 427–430.MATHMathSciNetGoogle Scholar
  15. 15.
    Merucci, C.,Interpolation réelle avec fonction paramètre. Dualité, reitération et applications, thèse, Institut de Mathématiques et d'Informatique, Université de Nantes, 1983.Google Scholar
  16. 16.
    Peetre, J.,A theory of interpolation of normed spaces, lecture notes, Brasilia 1963 [Notas Mat. 39 (1968), 1–86].Google Scholar
  17. 17.
    Pietsch, A.,Operator ideals, North-Holland, Amsterdam-New York-Oxford, 1980.MATHGoogle Scholar
  18. 18.
    Pietsch, A., Weyl numbers and eigenvalues of operators in Banach spaces,Math. Ann. 247 (1980), 149–168.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Triebel, H.,Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam-New York-Oxford 1978.Google Scholar

Copyright information

© Institut Mittag Leffler 1987

Authors and Affiliations

  • Fernando Cobos
    • 1
  1. 1.Departamento de Matemáticas Facultad de CienciasUniversidad Autónoma de MadridMadridSpain

Personalised recommendations