Advertisement

Arkiv för Matematik

, Volume 23, Issue 1–2, pp 217–240 | Cite as

Adjoint boundary value problems for the biharmonic equation onC 1 domains in the plane

  • Jonathan Cohen
  • John Gosselin
Article

Keywords

Dirichlet Problem Lipschitz Domain Coset Space Adjoint Problem Biharmonic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agmon, S., Multiple layer potentials and the Dirichlet problem for higher order elliptic equations in the plane,Comm. Pure. Appl. Math. 10 (1957), 179–239.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Calderón, A. P., Cauchy integrals on Lipschitz curves and related operators,Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 1324–1327.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cohen, J. andGosselin, J., The Dirichlet problem for the harmonic equation in a boundedC 1 domain in the plane,Indiana Univ. Math. J. 32 (1983), 635–685.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cohen, J. andGosselin, J., Stress potentials onC 1 domains, (preprint).Google Scholar
  5. 5.
    Coifman, R. R., McIntosh, A. andMeyer, Y., L'intégral de Cauchy définit un opérateur borné surL 2 pour les courbes Lipschitziennes,Ann. of Math. 116 (1982), 361–387.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Fabes, E., Jodeit, M. andRivière, N., Potential techniques for boundary value problems onC 1 domains,Acta Math. 141 (1978), 165–186.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fabes, E. andKenig, C., On the Hardy spaceH 1 of aC 1 domain,Ark. Mat. 19 (1981), 1–22.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Folland, G.,Introduction to Partial Differential Equations, Princetcn University Press, Mathematical Notes, #17, 1976.Google Scholar
  9. 9.
    Muskhelishvili, N. I.,Some Basic Problems of the Mathematical Theory of Elasticity, P. Noordhoff Ltd., Groningen -The Netherlands, 1963.MATHGoogle Scholar
  10. 10.
    Verchota, G., Layer potentials and boundary value problems for Laplace's equation on Lipschitz domains,Ph. D. thesis, University of Minnesota, 1982.Google Scholar

Copyright information

© Institut Mittag-Leffler 1985

Authors and Affiliations

  • Jonathan Cohen
    • 1
  • John Gosselin
    • 2
  1. 1.University of TennesseeKnoxvilleUSA
  2. 2.University of GeorgiaAthensUSA

Personalised recommendations