Arkiv för Matematik

, Volume 24, Issue 1–2, pp 191–219 | Cite as

Commutator and other second order estimates in real interpolation theory

  • Björn Jawerth
  • Richard Rochberg
  • Guido Weiss


Banach Space Order Estimate Positive Operator Maximal Function Besov Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BL.
    Bergh, J. andLöfström, J.,Interpolation spaces: An introduction, Springer-Verlag, Berlin-Heidelberg-New York, 1976.MATHGoogle Scholar
  2. BS.
    Bennet, C. andSharpley, R., Weak-type inequalities forH p and BMO. In:Proc. Sympos. Pure Math. XXXV:1 (1979), 201–230.Google Scholar
  3. FGSS.
    Fefferman, R., Gundy, R., Silverstein, M. andStein, E. M., Inequalities for ratios of functionals of harmonic functions,Proc. Nat. Acad. Sci. USA,79 (1982), 7958–7960.MATHCrossRefMathSciNetGoogle Scholar
  4. FJ.
    Frazier, M. andJawerth, B., Decomposition of Besov spaces,Indiana Univ. Math. J. 34 (1985).Google Scholar
  5. G.
    Garnett, J.,Bounded analytic functions, Academic Press, New York, 1981.MATHGoogle Scholar
  6. H.
    Hughes, R., On the logarithm of an abstract potential operator,Indiana Univ. Math. J. 29 (1980), 447–454.MATHCrossRefMathSciNetGoogle Scholar
  7. HP.
    Holmstedt, T. andPeetre, J., On certain functionals arising in the theory of interpolation spaces,J. Funct. Anal. 4 (1969), 88–94.MATHCrossRefMathSciNetGoogle Scholar
  8. PE.
    Peetre, J., A new approach in interpolation spaces,Studia Math. 34 (1970), 23–43.MATHMathSciNetGoogle Scholar
  9. P.
    Pustylnik, E. I., On functions of a positive operator,Math. USSR-Sb. 47 (1984), 27–42.CrossRefGoogle Scholar
  10. R.
    Rochberg, R., Interpolation of Banach spaces and negatively curved vector bundles,Pacific J. Math. 110 (1984), 355–376.MATHMathSciNetGoogle Scholar
  11. RW.
    Rochberg, R. andWeiss, G., Derivatives of analytic families of Banach spaces,Ann. of Math. 118 (1983), 315–347.CrossRefMathSciNetGoogle Scholar
  12. RW2.
    Rochberg, R. andWeiss, G., Analytic families of Banach spaces and their uses. In:Recent progress in Fourier analysis, North-Holland, Amsterdam (1985), 173–201.CrossRefGoogle Scholar
  13. T.
    Triebel, H.,Interpolation theory, function, spaces, differential operators, North-Holland, Amsterdam, 1978.Google Scholar
  14. Z.
    Zafran, M., Spectral theory and interpolation of operators,J. Funct. Anal. 36 (1980), 185–204.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Institut Mittag Leffler 1986

Authors and Affiliations

  • Björn Jawerth
    • 1
  • Richard Rochberg
    • 1
  • Guido Weiss
    • 1
  1. 1.Dept. of MathematicsWashington UniversitySt. LouisUSA

Personalised recommendations