Advertisement

Arkiv för Matematik

, 29:285 | Cite as

Convolution equations in domains ofC n

  • Ragnar Sigurdsson
Article

Keywords

Compact Subset Convex Subset Convex Domain Finite Type Convolution Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Azarin, V. S., On the asymptotic behavior of subharmonic functions of finite order,Math. USSR Sb. 36 (1980), 135–153.MATHCrossRefGoogle Scholar
  2. 2.
    Azarin, V. S. andGiner, V. B., The structure of limits sets of entire and subharmonic functions,Teor. Funktsiî Funktsional. Anal. i Prilozhen. 38 (1982), 3–12 (in Russian).MATHMathSciNetGoogle Scholar
  3. 3.
    Berenstein, C. A. andStruppa, D. C., Complex analysis and mean-periodicity, Report, University of Maryland (1988).Google Scholar
  4. 4.
    Ehrenpreis, L., Solutions of some problems of division IV,Amer. J. Math. 82 (1960), 522–588.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ehrenpreis, L.,Fourier analysis in several complex variables, Wiley Interscience, (1970).Google Scholar
  6. 6.
    Hörmander, L., On the range of convolution operators,Ann. of Math. 76 (1962), 148–170.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Hörmander, L., Supports and singular supports of convolutions,Acta Math. 110 (1963), 279–302.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hörmander, L., Convolution equations in convex domains,Inventiones Math. 4 (1968), 306–317.MATHCrossRefGoogle Scholar
  9. 9.
    Hörmander, L.,An introduction to complex analysis in several variables, North-Holland Publ. Comp., 1979.Google Scholar
  10. 10.
    Hörmander, L.,The analysis of linear partial differential operators, I and II, Springer-Verlag, 1983.Google Scholar
  11. 11.
    Hörmander, L. andSigurdsson, R., Limit sets of plurisubharmonic functions,Math. Scand. 65 (1989), 308–320.MATHMathSciNetGoogle Scholar
  12. 12.
    Krasičkov-Ternovskiî, I. F., Invariant subspaces of analytic functions I, Spectral analysis on convex regions,Math. USSR Sb. 16 (1972), 471–500; II. Spectral synthesis of convex domains,Math. USSR Sb. 17 (1972), 1–29.CrossRefGoogle Scholar
  13. 13.
    Lelong, P. andGruman, L.,Entire functions of several complex variables, Springer-Verlag, 1986.Google Scholar
  14. 14.
    Levin, B. Ja.,Distribution of zeros of entire functions, Translations of Math. Monographs 5, American Math. Society, Providence, 1960.Google Scholar
  15. 15.
    Malgrange, B., Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution,Ann. Inst. Fourier (Grenoble) 6 (1955–56), 271–355.MathSciNetGoogle Scholar
  16. 16.
    Malgrange, B., Sur les équations de convolution,Rend. Sem. Mat. Univ. Politec. Torino 19 (1959–60), 19–27.MathSciNetGoogle Scholar
  17. 17.
    Martineau, A., Sur les fonctionelles analytiques et la transformation de Fourier-Borel,J. Anal. Math. 11 (1963), 1–164.MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Martineau, A., Équations différentielles d'ordre infini,Bull. Soc. Math. France 95 (1967), 109–154.MATHMathSciNetGoogle Scholar
  19. 19.
    Meril, A. andStruppa, D. C., Convolutors of holomorphic functions, in:Complex Analysis II, Lecture Notes in Math.1276 pp. 253–275. Springer-Verlag, Berlin-New York, 1987.CrossRefGoogle Scholar
  20. 20.
    Moržhakov, V. V., Convolution equations of functions holomorphic in convex domains and on convex compacta,Math. Notes 16 (1975), 846–851.MATHGoogle Scholar
  21. 21.
    Moržhakov, V. V., On epimorphicity of a convolution operator in convex domains ofC 1,Math. USSR Sb. 60 (1988), 347–364.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Napalkov, V. V., An equation of convolution type in tube domains ofC 2,Math. USSR Izvestija 8 (1974), 452–462.CrossRefGoogle Scholar
  23. 23.
    Napalkov, V. V., On a uniqueness theorem in the theory of functions of several complex variables, and homogeneous equations of convolution type in tube domains ofC n,Math. USSR Isvestija 10 (1976), 111–126.CrossRefGoogle Scholar
  24. 24.
    Napalkov, V. V., Convolution equations in multidimensional spaces,Math. Notes 25 (1979), 393–400.MATHMathSciNetGoogle Scholar
  25. 25.
    Ronkin, L. I., Entire functions, in: G. M. Khenkin (ed.),Several complex variables III, Encyclopaedia of Mathematical Sciences, vol. 9, pp. 1–30. Springer-Verlag, Berlin-Tokyo, 1989.Google Scholar
  26. 26.
    Schaefer, H. H.,Topological vector spaces, Springer-Verlag, Berlin-New York, 1970.Google Scholar
  27. 27.
    Sigurdsson, R., Growth properties of analytic and plurisubharmonic functions of finite order,Math. Scand. 59 (1986), 234–304.MathSciNetGoogle Scholar
  28. 28.
    Wiegerinck, J. J., Growth properties of Paley-Wiener functions onC n,Nederl. Akad. Wetensch. Proc. A87 (1984), 95–112.MathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1991

Authors and Affiliations

  • Ragnar Sigurdsson
    • 1
  1. 1.Science InstituteUniversity of IcelandReykjavikIceland

Personalised recommendations