Arkiv för Matematik

, Volume 29, Issue 1–2, pp 261–276 | Cite as

On the rate of convergence of certain summability methods for Fourier integrals ofL 2-functions

  • D. Müller
  • Wang Kun-yang
Article

Keywords

Maximal Operator Euclidean Norm Maximal Function Fourier Multiplier Summability Method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carbery, A., Radial Fourier multipliers and associated maximal functions, in:Recent progress in Fourier analysis, edited by I. Peral and T.-L. Rubio de Francia, pp. 49–56, North-Holland, Amsterdam, 1985.CrossRefGoogle Scholar
  2. 2.
    Carbery, A., An almost-orthogonality principle with applications to maximal functions associated to convex bodies,Bull. Am. Math. Soc. 14 (1986), 269–273.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Carbery, A., Gasper, G. andTrebels, W., On localized potential spaces,J. Approximation Theory 48 (1986), 251–261.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chen Tian-ping, Generalized Bochner—Riesz means of Fourier integrals, in:Multivariate approximation theory IV: Proceedings of the Mathematical Research Institute at Oberwolfach, Febr. 12–18, 1989, edited by C. K. Chui, W. Schempp, K. Zeller, Birkhäuser, Basel-Boston, 1989.Google Scholar
  5. 5.
    Cossar, J., A theorem on Cesàro summability,J. London Math. Soc. 16 (1941), 56–68.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dappa, H. andTrebels, W., On maximal functions generated by Fourier multipliers,Ark. Mat. 23 (1985), 241–259.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gasper, G. andTrebels, W., A characterization of localized Bessel potential spaces and applications to Jacobi and Hankel multipliers,Studia Math. 94 (1979), 243–278.MathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1991

Authors and Affiliations

  • D. Müller
    • 1
  • Wang Kun-yang
    • 2
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  2. 2.Dept. of MathematicsBeijing Normal UniversityBeijingChina

Personalised recommendations