Arkiv för Matematik

, Volume 38, Issue 2, pp 327–342 | Cite as

On the Poincaré inequality for vector fields

  • Ermanno Lanconelli
  • Daniele Morbidelli


We prove the Poincaré inequality for vector fields on the balls of the control distance by integrating along subunit paths. Our method requires that the balls are representable by means of suitable “controllable almost exponential maps”.


Vector Field Control Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BM]Biroli, M. andMosco, U., Sobolev inequalities on homogeneous spaces,Potential Anal. 4 (1995), 311–324.MathSciNetGoogle Scholar
  2. [C]Citti, G.,C regularity of solutions of the Levi equation,Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 517–534.CrossRefMATHMathSciNetGoogle Scholar
  3. [CLM]Citti, G., Lanconelli, E. andMontanari, A., On the interiorC -solvability of the Dirichlet problem for the prescribed Levi-curvature equation,Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 10 (1999), 61–68.MathSciNetGoogle Scholar
  4. [FP]Fefferman, C. andPhong, D. H., Subelliptic eigenvalue problems, inConference on Harmonic Analysis in Honor of Antoni Zygmund (Beckman, W., Calderón, A. P., Fefferman, R. and Jones, P. W., eds.), pp. 590–606, Wadsworth, Belmont, Calif., 1983.Google Scholar
  5. [F]Franchi, B., Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic operators,Trans. Amer. Mat. Soc. 327 (1991), 125–158.MATHMathSciNetGoogle Scholar
  6. [FL1]Franchi, B. andLanconelli, E., Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients,Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1983), 523–541.MathSciNetGoogle Scholar
  7. [FL2]Franchi, B. andLanconelli, E., Une métrique associée à une classe d'opérateurs elliptiques dégénérés,Conference on Linear Partial and Pseudodifferential Operators (Torino, 1982),Rend. Sem. Mat. Univ. Politec. Torino 1983 (Special issue) (1984), 105–114.Google Scholar
  8. [FL3]Franchi, B. andLanconelli, E., Une condition géometrique pour l'inégalité de Harnack,J. Math. Pures Appl. 64 (1985), 237–256.MathSciNetGoogle Scholar
  9. [FLW]Franchi, B., Lu, G. andWheeden, R., A relationship between Poincaré type inequalities and representation formulas in spaces of homogeneous type,Internat. Math. Res. Notices 1 (1996), 1–14.MathSciNetGoogle Scholar
  10. [GN]Garofalo, N. andNhieu, D. M., Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces,Comm. Pure Appl. Math. 49 (1996), 1081–1144.CrossRefMathSciNetGoogle Scholar
  11. [HK]Hajłasz, P. andKoskela, P., Sobolev meets Poincaré,C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 1211–1215.Google Scholar
  12. [J]Jerison, D., The Poincaré inequality for vector fields satisfying Hörmander's condition,Duke Math. J. 53 (1986), 503–523.CrossRefMATHMathSciNetGoogle Scholar
  13. [MS]Maheux, P. andSaloff-Coste, L., Analyse sur le boules d'un, opérateur souselliptique,Math. Ann. 303 (1995), 713–746.CrossRefMathSciNetGoogle Scholar
  14. [M]Morbidelli, D., Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields, to appear inStudia Math. Google Scholar
  15. [NSW]Nagel, A., Stein, E. M. andWainger, S., Balls and metrics defined by vector fields I: basic properties,Acta Math. 155 (1985), 103–147.MathSciNetGoogle Scholar
  16. [S]Saloff-Coste, L., A note on Poincaré, Sobolev and Harnack inequalities,Internat. Math. Res. Notices 2 (1992), 27–38.MATHMathSciNetGoogle Scholar
  17. [V]Varopoulos, N. T., Fonctions harmoniques sur les groupes de Lie,C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), 519–521.MATHMathSciNetGoogle Scholar
  18. [VSC]Varopoulos, N. T., Saloff-Coste, L. andCoulhon, T.,Analysis and Geometry on Groups, Cambridge Univ. Press, Cambridge, 1992.Google Scholar

Copyright information

© Institut Mittag-Leffler 2000

Authors and Affiliations

  • Ermanno Lanconelli
    • 1
  • Daniele Morbidelli
    • 1
  1. 1.Dipartimento di MatematicaUniversità di BolognaBolognaItaly

Personalised recommendations