Advertisement

Arkiv för Matematik

, Volume 21, Issue 1–2, pp 111–125 | Cite as

Basis properties of Hardy spaces

  • Per Sjölin
  • Jan-Olov Strömberg
Article

Keywords

Basis Property Hardy Space Orthonormal System Unconditional Basis Orthogonal System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bockariev, S. V., Existence of basis in the space of analytic functions in the disc and some properties of the Franklin system.Mat. Sbornik. 95 (1974), 3–18 (in Russian).Google Scholar
  2. 2.
    Calderón, A. P. andTorchinsky, A., Parabolic maximal functions associated with a distribution.Adv. Math. 16 (1975), 1–64.MATHCrossRefGoogle Scholar
  3. 3.
    Carleson, L., An explicit unconditional basis inH 1.Institut Mittag. Leffler, Report No. 2, 1980.Google Scholar
  4. 4.
    Ciesielski, Z., Equivalence, unconditionality and convergence a.e. of the spline bases inL p spaces.Approximation theory, Banach Center Publications, vol.4, 55–68.Google Scholar
  5. 5.
    Ciesielski, Z., The Franklin orthogonal system as unconditional basis in ReH 1 and VMO. Preprint 1980.Google Scholar
  6. 6.
    Ciesielski, Z. andDomsta, J., Estimates for the spline orthonormal functions and for their derivatives.Studia Math. 44 (1972), 315–320.MATHMathSciNetGoogle Scholar
  7. 7.
    Ciesielski, Z., Simon, P. andSjölin, P., Equivalence of Haar and Franklin bases inL p spaces.Studia Math. 60 (1976), 195–211.Google Scholar
  8. 8.
    Maurey, B., Isomorphismes entre espacesH 1.Acta Math. 145 (1980), 79–120.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Schipp, F. andSimon, P., Investigation of Haar and Franklin series in Hardy spaces.Analysis Math. 8 (1982), 47–56.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Sjögren, P., Lectures on atomicH p space theory inR n. Preprint series, Dep. of Math., Umeå Univ., No. 5, 1981.Google Scholar
  11. 11.
    Wojtaszczyk, P., The Franklin system is an unconditional basis inH 1.Ark. Mat. 20 (1980), 293–300.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Zygmund, A.,Trigonometric series, vol. 1, Cambridge Univ. Press 1959.Google Scholar

Copyright information

© Institut Mittag Leffler 1983

Authors and Affiliations

  • Per Sjölin
    • 1
  • Jan-Olov Strömberg
    • 1
  1. 1.Dept. of MathematicsUniversity of StockholmStockholmSweden

Personalised recommendations