Arkiv för Matematik

, Volume 21, Issue 1–2, pp 75–96 | Cite as

Riemann’s zeta-function and the divisor problem

  • Matti Jutila
Article

Keywords

Riemann Zeta Function Divisor Problem Power Moment Partial Summation Approximate Functional Equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atkinson, F. V., The mean value of the zeta-function on the critical line.Quart. J. Math. Oxford10 (1939), 122–128.CrossRefGoogle Scholar
  2. 2.
    Atkinson, F. V., The mean-value of the Riemann zeta function.Acta Math.81 (1949), 353–376.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Balasubramanian, R., An improvement on a theorem of Titchmarsh on the mean square of\(\left| {\zeta \left( {\frac{1}{2} + it} \right)} \right|\).Proc. London Math. Soc. (3)36 (1978), 540–576.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gallagher, P. X., A large sieve density estimate near σ=1.Invent. Math.11 (1970), 329–339.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Good, A., Ein Ω-Resultat für das quadratische Mittel der Riemannschen Zetafunktion auf der kritischen Linie.Invent. Math.41 (1977), 233–251.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Heath-Brown, D. R., The fourth power moment of the Riemann zeta function.Proc. London Math. Soc. (3)38 (1979), 385–422.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Heath-Brown, D. R., The twelfth power moment of the Riemann zeta-function.Quart. J. Math. Oxford (2)29 (1978), 443–462.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Heath-Brown, D. R., The mean value theorem for the Riemann zeta-function.Mathematika25 (1978), 177–184.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kolesnik, G. A., On the estimation of some trigonometric sums.Acta Arith.25 (1973), 7–30.MATHMathSciNetGoogle Scholar
  10. 10.
    Montgomery, H. L.,Topics in Multiplicative Number Theory. Lecture Notes in Math. 227, Springer 1971.Google Scholar
  11. 11.
    Titchmarsh, E. C.,The theory of the Riemann zeta-function. Clarendon Press, Oxford 1951.MATHGoogle Scholar

Copyright information

© Institut Mittag Leffler 1983

Authors and Affiliations

  • Matti Jutila
    • 1
  1. 1.Department of mathematicsUniversity of TurkuTurkuFinland

Personalised recommendations