Advertisement

Ukrainian Mathematical Journal

, Volume 48, Issue 6, pp 828–837 | Cite as

Some geometric-differential models in the class of formal operator power series

  • A. M. Baranovich
  • Yu. L. Daletskii
Article

Abstract

We consider an example of a formal construction of local differential geometry in which smooth functions regarded as morphisms are replaced by formal operator power series.

Keywords

Vector Bundle Coordinate Transformation Bundle Versus Parallel Translation Linear Topological Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. L. Daletskii and Ya. I. Belopol’skaya, Stochastic Equations and Differential Geometry [in Russian], Vyshcha Shkola, Kiev (1989).Google Scholar
  2. 2.
    M. N. Araslanov and Yu. L. Daletskii, “Composition logarithm in the class of formal operator power series,” Funkts. Anal Prilozh., 26, No. 2, 57–60 (1992).MathSciNetGoogle Scholar
  3. 3.
    Yu. L. Daletskii and S. V. Fomin, Measures and Differential Equations in Infinite-Dimensional Spaces [in Russian], Nauka, Moscow 1983.Google Scholar
  4. 4.
    I. M. Gel’fand, Yu. L. Daletskii, and B. L. Tsygan, “On one version of noncommutative differential geometry,” Dokl Akad. Nauk SSSR, 308, No. 6, 1293–1299 (1989).Google Scholar
  5. 5.
    Yu. L. Daletskii, “Algebra of compositions and nonlinear equations,” in: Algebraic and Geometric Methods in Mathematical Physics, Kluwer, Dordrecht (1996), pp. 277–291.Google Scholar
  6. 6.
    C. Godbillon, Geometrie Differentielle et Mecanique Analytique, Hermann, Paris 1969.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • A. M. Baranovich
  • Yu. L. Daletskii

There are no affiliations available

Personalised recommendations