Archive for Rational Mechanics and Analysis

, Volume 112, Issue 4, pp 363–390 | Cite as

A hypersingular boundary integral method for two-dimensional screen and crack problems

  • W. L. Wendland
  • E. P. Stephan


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. S. Agranovič, Spectral properties of diffraction problems, in The General Method of Eigenvibrations in Diffraction, Theory (N. N. Vojtovich, B. S. Katzenelenbaum &A. N. Sivov, eds.), Nauka, Moscow 1977 (Russian).Google Scholar
  2. 2.
    J. F. Ahner &A. N. Ssiao, On the two-dimensional exterior boundary-value problems of elasticity, SIAM J. Appl. Math.31 (1976) 677–685.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    C. Atkinson, Fracture mechanics stress analysis, I and II, in Boundary Elements Techniques in Computer Aided Engineering (C. A. Brebbia, ed.), NATO ASI Ser. E, Appl. Sci.84, M. Nijhoff Publ. Dordrecht, Boston, Lancaster (1984) 355–398.Google Scholar
  4. 4.
    A. Bamberger, Approximation de la diffraction d'ondes élastiques une nouvelle approche (I), (II), (III) Rapp. Int. 91, 96, 98, Centre Math. Appl. Ecole Polytechnique, 91128 Palaiseau, France (1983).Google Scholar
  5. 5.
    A. Bamberger &Tuong Ha Duong, Formulation pour le calcul de la diffraction d'une onde acoustique par une surface rigide. Rapp. Int. 110, Centre Math. Appl. Ecole Polytechnique, 91128 Palaiseau, France (1985).Google Scholar
  6. 6.
    P. Bonnemay, Equations integrales pour l'élasticité plane, Thèse de 3ème cycle, Université de Paris VI (1979).Google Scholar
  7. 7.
    C. A. Brebbia, J. C. Telles &L. C. Wrobel, Boundary Element Techniques, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1984).CrossRefMATHGoogle Scholar
  8. 8.
    D. Clements, Boundary Value Problems Governed by Second Order Elliptic Systems. Pitman, Boston, London, Melbourne (1981).MATHGoogle Scholar
  9. 9.
    Ph. Cortey-Dumont, On the numerical analysis of integral equations related to the diffraction of elastic waves by a crack, Thèse d'état, University Paris 6 (1985).Google Scholar
  10. 10.
    M. Costabel, Boundary integral operators on curved polygons, Ann. Mat. Pura Appl.33 (1983) 305–326.CrossRefMathSciNetGoogle Scholar
  11. 11.
    M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal.19 (1988) 613–626.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    M. Costabel &E. P. Stephan, Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation, in (W. Fiszdon &K. Wilmánski, eds.), Math. Models and Meth. in Mech. 1981, Banach Center Publ.15 Warsaw (1985) 175.Google Scholar
  13. 13.
    M. Costabel &E. P. Stephan, Curvature terms in the asymptotic expansion for solutions of boundary integral equations on curved polygons. J. Integral Equations5 (1983) 353–371.MATHMathSciNetGoogle Scholar
  14. 14.
    M. Costabel &E. P. Stephan, The normal derivative of the double layer potential on polygons and Galerkin approximations, Appl. Anal.16 (1983) 205–228.CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    M. Costabel &E. P. Stephan, The method of Mellin transformation for boundary integral equations on curves with corners, in (A. Gerasulis &R. Vichnevetsky, eds.) Numerical Solution of Singular Integral Equations, IMACS, New Brunswick, N.Y. (1984) 95–102.Google Scholar
  16. 16.
    M. Costabel, E. P. Stephan &W. L. Wendland, On the boundary integral equations of the first kind for the bi-Laplacian in a polygonal plane domain, Ann. Scuola Norm. Sup. Pisa, Ser. IV10 (1983) 197–242.MATHMathSciNetGoogle Scholar
  17. 17.
    M. Costabel, E. P. Stephan &W. L. Wendland, Zur Randintegralmethode für das erste Fundamentalproblem der ebenen Elastizitätstheorie auf Polygongebieten, in (H. Kurke et al., eds.) Recent Trends in Mathematics, Reinhardsbrunn, B. G. Teubner, Leipzig (1982) 56–68.Google Scholar
  18. 18.
    M. Durand, Layer potentials and boundary value problems for the Helmholtz equation in the complement of a thin obstacle, Math. Meth. Appl. Sci.5 (1983) 389–421.CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    G. I. Eskin, Boundary Problems for Elliptic Pseudodifferential Operators, Transl. of Math. Mon., American Math. Soc.52, Providence, Rhode Island (1981).Google Scholar
  20. 20.
    P. J. T. Filippi, Layer potentials and acoustic diffraction, J. Sound Vibration54 (1977) 1–29.CrossRefMathSciNetGoogle Scholar
  21. 21.
    J. Giroire &J. C. Nedelec, Numerical solution of an exterior Neumann problem using a double layer potential. Math. Comp.3 (1978) 973–990.CrossRefMathSciNetGoogle Scholar
  22. 22.
    T. Ha Duong, A finite element method for the double-layer potential solutions for the Neumann exterior problem, Math. Meth. in the Appl. Sci.2 (1980) 191–208.ADSCrossRefMATHGoogle Scholar
  23. 23.
    M. Hamdi, Une formulation variationnelle par équations intégrales pour la résolution de l'équation de Helmholtz avec des conditions aux limites mixtes. C.R. Acad. Sci. Paris, Série II292 (1981) 17–21.MATHMathSciNetGoogle Scholar
  24. 24.
    S. Hildebrandt &E. Wienholtz, Constructive proofs of representation theorems in separable Hilbert space, Comm. Pure Appl. Math.17 (1964) 369–373.CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    G. C. Hsiao, P. Kopp &W. L. Wendland, Some applications of a Galerkin-collocation method for integral equations of the first kind, Math. Meth. in the Appl. Sci.6 (1984) 280–235.ADSCrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    G. C. Hsiao, E. P. Stephan &W. L. Wendland, An integral equation formulation for a boundary value problem of elasticity in the domain exterior to an are: In: Singularities and their Constructive Treatment (P. Grisvard, J. Whiteman &W. Wendland, eds.) Lecture Notes in Math.112, Springer-Verlag, Heidelberg (1985) 153–165.CrossRefGoogle Scholar
  27. 27.
    G. C. Hsiao, E. P. Stephan & W. L. Wendland, On the Dirichlet problem in elasticity for a domain exterior to arc, to appear in J. Computational and Applied Math.Google Scholar
  28. 28.
    G. C. Hsiao &W. L. Wendland, On a boundary integral method for some exterior problems in elasticity, (Preprint 769, FB Math. TH Damstadt 1983). Proc. Tbilisi Univ. UDK 539.3, Mat. Mech. Astron.257 (18) (1985) 31–60.MathSciNetGoogle Scholar
  29. 29.
    G. C. Hsiao & W. I. Wendland, Boundary integral equations methods for exterior problems in elastostatics and elastodynamics, in preparation.Google Scholar
  30. 30.
    V. D. Kupradze, Potential Methods in the Theory of Elasticity, Jerusalem, Israel Program Scientific Transl. (1965).Google Scholar
  31. 31.
    U. Lamp, K.-T. Schleicher, E. P. Stephan &W. L. Wendland, Galerkin collocation for an improved boundary element method for a plane mixed boundary value problem, Computing33 (1984) 269–296.CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    J. L. Lions &E. Magenes, Non-homogeneous Boundary Value Problems and Applications I, Springer-Verlag, Berlin, Heidelberg, New York (1972).CrossRefMATHGoogle Scholar
  33. 33.
    R. C. MacCamy, On singular integral equations with logarithmic and Cauchy kernels, J. Math. Mech.7 (1958) 355–376.MATHMathSciNetGoogle Scholar
  34. 34.
    J. Mason &R. N. L. Smith, Boundary integral equation methods for a variety of curved crack problems, in (C. T. H. Baker &G. F. Miller, (eds.) Treatment of Integral Equations by Numerical Methods, Academic Press, London, New York (1982) 239–252.Google Scholar
  35. 35.
    J. C. Nedelec, Approximation par potentiel de double couche du problème de Neumann extérieur, C. R. Acad. Sci. Paris, Série A286 (1977) 616–619.Google Scholar
  36. 36.
    J. C. Nedelec, Le potential de double couche pour les ondes élastiques, Rapp. Int. 99, Centre Math. Appl. Ecole Polytechnique, 91128 Palaiseau, France (1983).Google Scholar
  37. 37.
    E. P. Stephan, Solution procedures for interface problems in acoustics and electromagnetics, in (P. Filippi, ed.) Theoretical Acoustics and Numerical Techniques, CISM No.277, Springer-Verlag, Wien (1983) 291–348.CrossRefGoogle Scholar
  38. 38.
    E. P. Stephan, Boundary integral equations for mixed boundary value problems in ℝ3, Math. Nachr.134 (1987) 21–53.CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    E. P. Stephan, Boundary integral equations for mixed boundary value problems, screen and transmission problems in ℝ3, Habilitationsschrift, TH Darmstadt, Germany (1984) (Preprint 848, FB Math. TH Darmstadt).Google Scholar
  40. 40.
    E. P. Stephan &W. L. Wendland, An augmented Galerkin procedure for the boundary integral method applied to two-dimensional screen and crack problems, Appl. Analysis18 (1984) 183–219.CrossRefMathSciNetGoogle Scholar
  41. 41.
    M. Stern, Formulation of cracks in plate bending, in (C. A. Brebbia, ed.) Boundary Element Techniques in Computer Aided Engineering, NATO ASI Ser. E, Appl. Sci.84, M. Nijhoff Publ. Dordrecht, Boston, Lancaster (1984) 345–354.CrossRefGoogle Scholar
  42. 42.
    M. Taylor, Pseudodifferential Operators, Princeton University Press (1981).Google Scholar
  43. 43.
    F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Plenum Press, New York, London, Vol. 1 (1980).CrossRefMATHGoogle Scholar
  44. 44.
    W. L. Wendland, Strongly elliptic boundary integral equations. In: The State of the Art in Numerical Analysis (A. Jserless, M Powell, eds.) IMA, Oxford Univ. Press (1987).Google Scholar
  45. 45.
    W. L. Wendland, E. P. Stephan &G. C. Hsiao, On the integral equation method for the plane mixed boundary value problem of the Laplacian. Math. Meth. in Appl. Sci.1 (1979) 265–321.ADSCrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    C. H. Wilcox, Scattering Theory for the d'Alembert Equation in Exterior Domains, Lecture Notes Math.442 Springer-Verlag, Berlin, Heidelberg, New York (1975).MATHGoogle Scholar
  47. 47.
    P. Wolfe, An integral operator connected with the Helmholtz equation, J. Functional Anal.36 (1980) 105–113.CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    A. Ziani &C. Devys, Méthode integrale pour le calcul des modes quidés d'une fibre optique, Rapp. Int. 129, Centre Math. Appl. École Polytechnique, 91128 Palaiseau, France (1985).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • W. L. Wendland
    • 1
    • 2
  • E. P. Stephan
    • 1
    • 2
  1. 1.Mathematisches Institut AUniversität StuttgartStuttgart 80
  2. 2.Institut für Angewandte MathematikUniversität HannoverHannover 1

Personalised recommendations