Advertisement

Archive for Rational Mechanics and Analysis

, Volume 112, Issue 4, pp 291–318 | Cite as

Existence, uniqueness and Lq-estimates for the stokes problem in an exterior domain

  • Giovanni P. Galdi
  • Christian G. Simader
Article

Keywords

Pressure Field Duality Pairing Stokes Flow Stokes Problem Exterior Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmon, S., Douglis, A. &Nirenberg, L., 1964,Estimates near the boundary of solutions of elliptic partial differential equations satisfying general boundary conditions, II, Comm. Pure Appl. Math.,17, 35–92.CrossRefMATHMathSciNetGoogle Scholar
  2. Bogovskii, M. E., 1979,Solution if the first boundary value problem for the equation on continuity of an incompressible medium, Sov. Mat. Dokl.,20, 1094–1098.Google Scholar
  3. Borchers, W. & Miyakawa, T., 1989,Algebraic L 2 decay for the Navier Stokes flows if exterior domains, Preprint, Universität Paderborn.Google Scholar
  4. Cattabriga, L., 1961,Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Padova31, 308–340.MATHMathSciNetGoogle Scholar
  5. Chang, I. D., &Finn, R., 1961,On the solutions of a class of equations occurring in continuum mechanics with application to the Stokes paradox, Arch. Rational Mech. Anal.7, 388–401.ADSCrossRefMATHMathSciNetGoogle Scholar
  6. Gagliardo, E., 1957,Caratterizzazioni delle tracce sulla frontiera relative and alcune classi di funzioni in n variabili, Rend. Sem. Mat. Padova27, 284–305.MATHMathSciNetGoogle Scholar
  7. Galdi, G. P., (forthcoming),An introduction to the mathematical theory of the Navier-Stokes equations, Springer Tracts in Natural Philosophy.Google Scholar
  8. Galdi, G. P. &Maremonti, P., 1986,Monotonic decreasing and asymptotic behavior of the kinetic energy for weak solutions of the Navier-Stokes equations in exterior domains, Arch. Rational Mech. Anal.94, 253–266.ADSCrossRefMATHMathSciNetGoogle Scholar
  9. Giga, Y., 1981,Analyticity of the semigroup generated by the Stokes operator in L r spaces, Math. Z.178, 297–329.CrossRefMATHMathSciNetGoogle Scholar
  10. Giga, Y., 1985.Domains of fractional powers of the Stokes operator in L r spaces, Arch. Rational Mech. Anal.89, 251–265.ADSCrossRefMATHMathSciNetGoogle Scholar
  11. Kozono, H. & Sohr, H., 1989,L q-regularity theory of the Stokes equations in exterior domains, Preprint, Universität Paderborn.Google Scholar
  12. Ladyzhenskaya, O. A., 1959,Investigation of the Navier-Stokes equation for a stationary flow of an incompressible fluid, Usp. Mat. Nauk (3)14, 75–97.MATHGoogle Scholar
  13. Ladyzhenskaya, O. A., 1969,The mathematical theory of viscous incompressible flow, Gordon & Breach.Google Scholar
  14. Lax, P. D., 1955,On Cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations, Comm. Pure Appl. Math.8, 615–633.CrossRefMATHMathSciNetGoogle Scholar
  15. Maremonti, P. &Solonnikov, V. A., 1985,Estimates for the Laplace operator in exterior domains, (in Russian) Zap. Nauk. Sem. LOMI146, 92–102.MATHMathSciNetGoogle Scholar
  16. Maremonti, P. & Solonnikov, V. A., 1986,Su una disequaglianza per le soluzioni del problema di Stokes in domini esterni, Preprint, Universìtà di Napoli.Google Scholar
  17. Maslennikova, V. N. &Bogovskii, M. E., 1978,Denseness of finite solenoidal vector fields (in Russian), Sib. Mat. Zh.19, 1092–1108.MATHMathSciNetGoogle Scholar
  18. Miranda, C., 1978,Istituzioni di analisi funzionale lineare, U.M.I., Oderisi da Gubbio Editrice.Google Scholar
  19. Nečas, J., 1967,Les méthodes directes en théorie des équations elliptiques, Masson et Cie.Google Scholar
  20. Simader, C. G., 1972,On Dirichlet's boundary value problem, Lecture Notes in Mathematics, Vol. 268, Springer-Verlag.Google Scholar
  21. Simader, C. G. & Sohr, H., (forthcoming),A new approach to the Helmholtz decomposition in L q-spaces for bounded and exterior domains.Google Scholar
  22. Smirnov, V. I., 1964,A course of higher mathematics, Vol. V, Pergamon Press.Google Scholar
  23. Sobolev, S. L., 1963,Denseness of finite fields in the space L pm(En) (in Russian), Sib. Mat. Zh.3, 673–682.MathSciNetGoogle Scholar
  24. Sobolevskii, P. E., 1960,On the smoothness of generalized solutions of the Navier-Stokes equations, Soviet Mat. Dokl.131, 341–343.MathSciNetGoogle Scholar
  25. Solonnikov, V. A., 1960,On the estimates of the tensor Green function for some boundary-value problems, Soviet Mat. Dokl.130, 988–991.MathSciNetGoogle Scholar
  26. Solonnikov, V. A., 1966,On general boundary-value problems for elliptic systems in the sense of Douglis-Nirenberg, II, Trudy Mat. Inst. Steklov92, 233–297.MathSciNetGoogle Scholar
  27. Solonnikov, V. A., 1977,Estimates of solutions of nonstationary Navier-Stokes equations, J. Sov. Math.8, 467–529.CrossRefMATHGoogle Scholar
  28. Solonnikov, V. A. &Sčadilov, V. E., 1973,On a boundary value problem for a stationary system of Navier-Stokes equations, Trudy Mat. Inst. Steklov125, 196–199.MathSciNetGoogle Scholar
  29. Stokes, G., 1856, seeMathematical and physical papers, Cambridge Univ. Press.Google Scholar
  30. Temam, R., 1977,Navier-Stokes equations, North Holland.Google Scholar
  31. Vorovich, I. I. &Youdovich, V. I., 1961,Stationary flow of a viscous incompressible fluid (in Russian), Mat. Sborn.53, 391–428.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Giovanni P. Galdi
    • 1
    • 2
  • Christian G. Simader
    • 1
    • 2
  1. 1.Università di FerraraItaly
  2. 2.Universität BayreuthFederal Republic of Germany

Personalised recommendations