Journal of Bone and Mineral Metabolism

, Volume 11, Issue 1, pp S7–S16 | Cite as

Perspectives on bone densitometry: Past/present/future

  • Michael Jergas
  • Stephan Grampp
  • Satoshi Hagiwara
  • Philipp Lang
  • Eli J. Bendavid
  • Harry K. Genant
Section II: Symposium I Consensus Development Symposium On Osteoporosis In Japan October 29, 1992 Osaka


Osteoporosis is defined as a decrease in bone mass and structural changes in bone leading to an increased fracture incidence. Therefore, early diagnosis in terms of prophylaxis and treatment are of great interest. Over the past several decades there has been considerable progress in the development and application of non-invasive methods of bone mass measurements or bone densitometry. This article reviews basic methodology and developments in bone densitometry including the early approaches like radiogrammetry, photo densitometry, neutron activation analysis and compton scattering techniques, present methods like single and dual x-ray absorptiometry and quantitative computed tomography, and recent developments like quantitative ultrasound, magnetic resonance techniques and structural analysis. The widespread interest in bone densitometry will initiate further improvement of established methods and development of new applications.


Osteoporosis Bone Mass Neutron Activation Neutron Activation Analysis Mass Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cummings SR, Black D, Rubin SM: Lifetime risks of hip, Colles' or vertebral fracture, and coronary heart disease among white postmenopausal women. Arch Int Med 149: 2445–2448, 1989Google Scholar
  2. 2.
    Peck WA. The socioeconomic impact of osteoporosis., in Osteoporosis 1990, C. Christiansen and K. Overgaard, Editor., Osteopress ApS: Copenhagen. pp. 2067–2069, 1990Google Scholar
  3. 3.
    Resnick D. Osteoporosis: radiographic-pathologic correlation., in Osteoporosis Update 1987, H.K. Genant, Editor., University of California Press: Berkeley, California. pp. 31–39, 1987Google Scholar
  4. 4.
    Avioli, LV: The osteoporosis problem. Curr Concepts Nutr 5: 99–103, 1977PubMedGoogle Scholar
  5. 5.
    Barnett E, Nordin BEC: The radiological diagnosis of osteoporosis: a new approach. Clin Radiol 11: 166–174, 1960CrossRefPubMedGoogle Scholar
  6. 6.
    Singh YM, Nagrath AR, Maini PS: Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg 52-A: 457–467, 1970Google Scholar
  7. 7.
    Meema HE, Meema S. Radiogrammetry, in Noninvasive measurements of bone mass, S.H. Cohn, Editor., CRC Press: Boca Raton. pp. 5–50, 1981Google Scholar
  8. 8.
    Garn SM. The earlier gain and later loss of cortical bone, in Nutritional Perspective, C.C. Thomas, Editor., Springfield, IL. p. 146, 1970Google Scholar
  9. 9.
    van Hemert AM, Vandenbroucke JP, Birkenäger JC: Prediction of osteoporotic fractures in the general population by a fracture risk score: a 9-year follow-up among middle-aged women. Am J Epidemiol 132: 123–135, 1990PubMedGoogle Scholar
  10. 10.
    Heuck F, Schmidt E: Die quantitative Bestimmung des Knochens aus dem Röntgenbild. Fortschr. Röntgenstr. 93: 523–554, 1960Google Scholar
  11. 11.
    Cosman F, Herrington B, Himmelstein S, Lindsay R: Radiographic absorptiometry: a simple method for determination of bone mass. Osteoporosis Int 2: 34–38, 1991CrossRefGoogle Scholar
  12. 12.
    Cohn SH: In-vivo neutron activation analysis: state of the art and future prospects. Med Phys 8: 145–154, 1981CrossRefPubMedGoogle Scholar
  13. 13.
    Garnett ES, Kennett TJ, Kenyon DB, Webber CE: A photon scattering technique for the measurement of absolute bone density in man. Radiology 106: 209–212, 1973PubMedGoogle Scholar
  14. 14.
    Webber CE. Compton Scattering Methods, in Noninvasive measurements of bone mass and their clinical application, S.H. Cohn, Editor., CRC Press: Boca Raton. pp. 101–120, 1981Google Scholar
  15. 15.
    Cameron JR, Sorenson JA: Measurement of bone mineral in vivo: an improved method. Science 142: 230–232, 1963PubMedGoogle Scholar
  16. 16.
    Schlenker RA, Von Seggen WW: The distribution of cortical and trabecular bone mass along the lengths of the radius and ulna and the implications for in vivo bone mass measurements. Calcif Tissue Res 20: 41–52, 1970Google Scholar
  17. 17.
    Wahner HW, Eastell R, Riggs BL: Bone mineral density of the radius: where do we stand? Editorial in J Nucl Med 26: 1339–1341, 1985Google Scholar
  18. 18.
    Suominen H, Heikkinen E, Vaino P, Lahtinen T: Mineral density of calcaneus in men at different ages: a population study with special reference to life-style factors. Age Ageing 13: 273, 1984PubMedGoogle Scholar
  19. 19.
    Williams JA, Wagner J, Wasnich R, Heilbrun L: The effect of long-distance running upon appendicular bone mineral content. Med Sci Sport Exercise 16: 223–227, 1984Google Scholar
  20. 20.
    Vogel JM, Wasnich RD, Ross PD: The clinical relevance of calcaneus bone mineral measurements: a review. Bone Miner 5: 35–58, 1988CrossRefPubMedGoogle Scholar
  21. 21.
    Wasnich RD: Fracture prediction with bone mass measurements, in Osteoporosis Update 1987, H.K. Genant, Editor., University of California Press: Berkeley, California. pp. 95–101, 1987Google Scholar
  22. 22.
    Yano K, Wasnich RD, Bogel JM, Heilbrun LK: Bone mineral measurements among middle-aged and elderly Japanese Residents in Hawaii. Am J Epidemiol 119: 751–764, 1984PubMedGoogle Scholar
  23. 23.
    Mazess RB, Barden HS. Single- and dual photon absorptiometry for bone measurement in osteoporosis, in Osteoporosis Update, H.K. Genant, Editor., University of California Press: Berkeley. p. 73–80, 1987Google Scholar
  24. 24.
    Kelly T, Slovick D, Schoenfield D, Neer R: Quantitative digital radiography versus dual photon adsorptiometry of the lumbar spine. J Clin Endocrinol Metab 67: 839–844, 1988PubMedGoogle Scholar
  25. 25.
    Hansen MA, Hassager C, Overgaard K, Merslew U, Riis BJ, Christiansen C: Dual energy x-ray absorptiometry: a precise method of measuring bone mineral density in the lumbar spine. J. Nucl. Med. 31: 1156–1162, 1990PubMedGoogle Scholar
  26. 26.
    Mazess R, Chesnut III CH, McClung M, Genant HK: Enhanced precision with dual-energy x-ray absorptiometry. Calcif. Tissue Int. 51: 14–17, 1992CrossRefPubMedGoogle Scholar
  27. 27.
    Drinka PJ, Se Smet AA, Bauwens SF, Rogot A: The effect of overlying calcification on lumbar bone densitometry. Calcif. Tissue Int. 50: 507–510, 1992CrossRefPubMedGoogle Scholar
  28. 28.
    Lang P, Steiger P, Faulkner KG, Glüer CC, Genant HK: Osteoporosis: current techniques and recent developments in quantitative bone densitometry. Radiol Clin North Am 29: 49–76, 1991PubMedGoogle Scholar
  29. 29.
    Larnach TA, Boyd SJ, Smart RC, Butler SP, Rohl PG, Diamond TH: Reproducibility of lateral spine scans using dual energy x-ray absorptiometry. Calcif. Tissue Int. 51: 255–258, 1992CrossRefPubMedGoogle Scholar
  30. 30.
    Genant HK, Boyd DP: Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12: 545–551, 1977PubMedGoogle Scholar
  31. 31.
    Genant HK, Cann CE, Ettinger B, Gordan GS: Quantitative computed tomography of vertebral spongiosa: A sensitive method for detecting early bone loss after oophorectomy. Ann Int Med 97: 699–705, 1982PubMedGoogle Scholar
  32. 32.
    Glüer CC, Genant HK: Impact of marrow fat on accuracy of quantitative CT. J Comput Assist Tomogr 13: 1023–1035, 1989PubMedGoogle Scholar
  33. 33.
    Rohloff R, Hitzler H, Arndt W, Frey KW: Experimentelle Untersuchungen zur Genauigkeit der Mineralsalzgehaltsbestimmung spongiöser Knochen mit Hilfe der quantitativen CT (Einenergiemessung). Fortschr Röntgenstr 143: 692–697, 1985Google Scholar
  34. 34.
    Cann CE, Genant HK: Single versus dual-energy CT for vertebral mineral quantification. J Comp Assist Tomogr 7: 551–552, 1983Google Scholar
  35. 35.
    Glüer CC, Reiser UJ, Davis CA, Rutt BK, Genant HK: Vertebral mineral determination by quantitative computed tomography (QCT: Accuracy of single and dual energy measurements. J Comput Assist Tomogr 12: 242–258, 1988PubMedGoogle Scholar
  36. 36.
    McClean BA, Overton TR, Hangartner TN, Rathee S: A special purpose x-ray fan beam CT scanner for trabecular bone density measurement in the appendicular skeleton. Phys. Med. Biol. 35: 11–19, 1990CrossRefPubMedGoogle Scholar
  37. 37.
    Rüegsegger P, Durand E, Dambacher MA: Localization of regional forearm bone loss from high resolution computed tomographic images. Osteoporosis Int 1(2): 76–80, 1991CrossRefGoogle Scholar
  38. 38.
    Schneider P, Börner W, Mazess RB, Barden H: The relationship of peripheral to axial bone density. Bone Miner 4: 279–287, 1988PubMedGoogle Scholar
  39. 39.
    Riggs BL, Wahner HW, Dunn WL: Differential changes in bone mineral density of the appendicular and axial skeleton with aging. J Clin Invest 67: 328–335, 1981PubMedGoogle Scholar
  40. 40.
    Gruber HE, Baylink DJ: The effects of fluoride on bone. Clin. Orthop. Rel. Res. 257: 264–277, 1991Google Scholar
  41. 41.
    Chevalier F, Laval-Jeantet AM, Laval-Jeantet M, Bergot C: CT image analysis of the vertebral trabecular network in vivo. Calcif Tissue Int 51: 8–13, 1992CrossRefPubMedGoogle Scholar
  42. 42.
    Heaney RP, Avioli LV, Chestnut CH, Lappe J, Recker RR, Brandburger GH: Osteoporotic bone fragility: detection by ultrasound transmission velocity. JAMA 261: 2986–2990, 1989CrossRefPubMedGoogle Scholar
  43. 43.
    Resch H, Pietschmann P, Bernecker P, Krexner E, Willvonseder R: Broadband ultrasound attenuation: A new diagnostic method in osteoporosis. AJR 155: 825–828, 1990PubMedGoogle Scholar
  44. 44.
    Baran DT, Kelly AM, Karellas A, Gionet M, Price M, Leahy D, Steuterman S, McSherry B, Roche J: Ultrasound attenuation of the os calcis in women with osteoporosis and hip fractures. Calcif Tissue Int 43: 138–142, 1988PubMedGoogle Scholar
  45. 45.
    Glüer CC, Vahlensieck M, Faulkner KG, Engelke K, Black D, Genant HK: Site-matched calcaneal measurements of broadband ultrasound attenuation and single x-ray absorptiometry: do they measure different skeletal properties? J Bone Miner Res 7: 1071–1079, 1992PubMedGoogle Scholar
  46. 46.
    Sebag GH, Moore SG: Effect of trabecular bone on the appearance of marrow in gradient-echo imaging of the appendicular skeleton. Radiology 174: 855–859, 1990PubMedGoogle Scholar
  47. 47.
    Ford JC, Wehrli FW: In vivo quantitative characterization of trabecular bone by NMR interferometry and localized proton spectroscopy. Mag. Res. Med. 17: 543–551, 1991Google Scholar
  48. 48.
    Davis CA, Genant HK, Dunham JS: The effects of bone on proton NMR relaxation times of surrounding liquids. Invest Radiol 21: 472–477, 1986PubMedGoogle Scholar
  49. 49.
    Majumdar S, Thomasson D, Shimakawa A, Genant HK: Quantitation of the susceptibility difference between trabecular bone and bone marrow: experimental studies. Mag Res Med 22: 111–127, 1991Google Scholar
  50. 50.
    Majumdar S, Genant HK: In vivo relationship between marrow marrow T2* and trabecular bone density determined with a chemical shift-selective asymmetric spin-echo sequence. JMRI 2: 209–219, 1992PubMedGoogle Scholar
  51. 51.
    Wehrli FW, Ford JC, Attie M, Kressel HY, Kaplan FS: Trabecular structure: preliminary application of MR interferometry. Radiology 179: 615–621, 1991PubMedGoogle Scholar
  52. 52.
    Faulkner KG, Cann CE, Hasegawa BH: The effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. Radiology 179: 669–674, 1991PubMedGoogle Scholar
  53. 53.
    Geraets WGM, Stelt PFV, Netelenbos CJ, Elders PJM: A new method for automatic recognition of the radiographic trabecular pattern. J Bone Miner Res 5: 227–233, 1990PubMedGoogle Scholar
  54. 54.
    Gärdsell P, Johnell O, Nilsson BE: The predictive value of bone loss for fragility fractures in women: a longitudinal study over 15 years. Calcif Tissue Int 49: 90–94, 1991PubMedGoogle Scholar
  55. 55.
    Black DM, Cummings SR, Genant HK, Nevitt MC, Palermo L, Browner WS: Axial bone mineral density predicts fractures in older women. J Bone Miner Res 6: S862, 1991Google Scholar

Copyright information

© Japanese Society of Bone Metabolism Research 1993

Authors and Affiliations

  • Michael Jergas
    • 1
  • Stephan Grampp
    • 1
  • Satoshi Hagiwara
    • 1
  • Philipp Lang
    • 1
  • Eli J. Bendavid
    • 1
  • Harry K. Genant
    • 1
  1. 1.Department of Radiology, Osteoporosis Research GroupUniversity of California San Francisco

Personalised recommendations