Skip to main content
Log in

Direct spectroscopic speciation of schoepite-aqueous phase equilibria

  • Regular Papers
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

UV-Vis spectra of solutions in solid-aqueous phase equilibrium with UO3·2H2O(s) and 0.03 kPa CO2 partial pressure are quantitatively analyzed by single component spectra of hydrolysis species UO 2+2 (aq), (UO2)2(OH) 2+2 and (UO2)3(OH) +5 . From the deconvoluted spectra, single species concentrations are obtained and interpreted by various statistical methods. Relationship of UV-Vis data to fluorescence spectroscopic analysis of the same system is discussed. Calculation of thermodynamic quantities gave consistent results, both within experimental data and with results from solubility studies and spectroscopic analysis from literature. A reinterpretation of some literature data is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Denning, Structure Bond., 79 (1992) 215.

    CAS  Google Scholar 

  2. Ch. K. Jřrgensen, Chem. Phys. Letters, 89 (1982) 455.

    Google Scholar 

  3. H. Cartwrigh, Mikrochem. J., 34 (1986) 313.

    Google Scholar 

  4. G. Meinrath, M. Schweinberger, Radiochim. Acta, (1996) 205.

  5. G. Meinrath, Radiochim. Acta, 77 (1997) 221.

    CAS  Google Scholar 

  6. J. Fuger, Radiochim. Acta, 58/59 (1992) 81.

    Google Scholar 

  7. G. Meinrath, J. Alloy Comp., (ICFE 3 proceedings) under review.

  8. G. Meinrath, Speciation of Uranium under Natural Ambient Conditions, Freiberg Online Geoscience, 1 (1998) (http://www.geo.tu-freiberg.de/fog), p. 99.

  9. G. Meinrath, T. Kimura, Inorg. Chim. Acta, 204 (1993) 79.

    Article  CAS  Google Scholar 

  10. J.-M. Peters, Mem. Soc. Roy. Sci. Ličge, 14 (1967) 1.

    Google Scholar 

  11. P. C. Debets, B. O. Loopstra, J. Inorg. Nucl. Chem., 25 (1963) 945.

    CAS  Google Scholar 

  12. T. G. Fawcett, C. E. Crowder, S. J. Brownell, Y. Zhang, C. Hubbard, W. Schreiner, G. P. Hamill, T. C. Huang, E. Sabino, J. I. Langford, R. Hamilton, D. Louer, Powder Diff., 3 (1988) 208.

    Google Scholar 

  13. H. P. Klug, L. Alexander, X-ray Diffraction Procedures; Wiley Interscience, New York, 1974.

    Google Scholar 

  14. R. Delhez, Th. H. de Keijser, J. I. Langford, D. Louer, E. J. Mittemeijer, E. J. Sonneveld, Crystal Imperfection Broadening and Peak Shape in Rietveld Method in: The Rietveld Method,R. A. Young (Ed.), IUCr Monographs of Crystallography, Oxford Science Publications, Oxford, 1993, Ch. 8, p. 132.

    Google Scholar 

  15. R. Naumann, Ch. Alexander, F. G. K. Baucke, Fresenius J. Anal. Chem., 349 (1994) 603.

    CAS  Google Scholar 

  16. F. G. K. Baucke, R. Naumann, Ch. Alexander-Weber, Anal. Chem., 65 (1993) 3244.

    Article  CAS  Google Scholar 

  17. W. A. E. McBryde, Analyst, 94 (1969) 337; 96 (1971) 739.

    Article  CAS  Google Scholar 

  18. J. A. Nelder, R. Mead, Computer J., 7 (1965) 308.

    Google Scholar 

  19. W. Spendley, Non-Linear Least-Squares Fitting using a Modified Minimization Procedure, in: OptimizationR. Fletcher (Ed.), Institute of Mathematics and its Application, Academic Press, Oxford, 1969, p. 259.

    Google Scholar 

  20. B. Efron, SIAM Rev., 21 (1979) 460.

    Article  Google Scholar 

  21. R. Stine, An Introduction to Bootstrap Methods, in: Modern Methods of Data Analysis,J. Fox, J. Scott Long (Eds) 1990, p. 325.

  22. F. J. Massey, J. Am. Stat. Soc., 46 (1951) 68.

    Google Scholar 

  23. G. Marsaglia, W.-W. Tsang, SIAM J. Scientific Stat. Comp., 5 (1984) 349.

    Google Scholar 

  24. U. Kramer-Schnabel, H. Bischoff, R. H. Xi, G. Marx, Radiochim. Acta, 56 (1992) 183.

    CAS  Google Scholar 

  25. G. Meinrath, Y. Kato, T. Kimura, Z. Yoshida, Radiochim. Acta, 75 (1996) 159.

    CAS  Google Scholar 

  26. Y. Kato, T. Kimura, Z. Yoshida, N. Nitani, Radiochim. Acta, 74 (1996) 21.

    CAS  Google Scholar 

  27. N. R. Draper, H. Smith, Applied Regression Analysis, Wiley Series in Probability and Mathematical Statistics. Wiley & Sons, 1980, p. 709.

  28. Y. Kato, G. Meinrath, T. Kimura, Z. Yoshida, Radiochim. Acta, 64 (1994) 107.

    CAS  Google Scholar 

  29. J. Cejka, Z. Urbanec, Secondary Uranium Minerals, Academia Nakladatelstvi Ceskoslovenske Akademie Ved, Prague, 1990, p. 93.

    Google Scholar 

  30. N. K. Pongi, G. Double, J. Hurwic, Bull. Soc. Chim. France, 117 (1980) 1–352.

    Google Scholar 

  31. V. Baran, Uranium-Oxygen Chemistry, Czech Nuclear Research Institute, Rez Czech Republic (1992).

    Google Scholar 

  32. L. G. Sillen, Acta Chem. Scand., 18 (1964) 1085.

    Google Scholar 

  33. L. Maya, Inorg. Chem., 21 (1982) 2895.

    Article  CAS  Google Scholar 

  34. J. Stary, Coll. Czech. Chem. Comm., 25 (1960) 890.

    CAS  Google Scholar 

  35. G. R. Choppin, J. N. Mathur, Radiochim. Acta, 52/53 (1991) 25.

    Google Scholar 

  36. G. Meinrath, Wiss. Mitt. Geol. Freiberg Vol. 4, TU Bergakademie Freiberg, Freiberg, 1997, p. 150.

    Google Scholar 

  37. G. Meinrath, J. Radional. Nucl. Chem., 224 (1997) 119.

    CAS  Google Scholar 

  38. G. Meinrath, Y. Kato, Z. Yoshida, J. Radioanal. Nucl. Chem., 174 (1993) 299. (Erratum: J. Radioanal. Nucl. Chem. 175 (1994) 253.

    CAS  Google Scholar 

  39. R. Hoffmann, V. I. Minkin, B. K. Carpenter, Bull. Soc. Chim. France, 133 (1996) 117.

    CAS  Google Scholar 

  40. G. E. P. Box, N. R. Draper, Empirical Model Building and Response Surfaces; Wiley Series in Probability and Mathematical Statistics, Wiley, New York, 1987, p. 340.

    Google Scholar 

  41. W. D. Schecher, C. T. Driscoll, Water Resour. Res., 24 (1988) 533.

    CAS  Google Scholar 

  42. R. J. Jessen, Biometrics, 31 (1975) 449.

    Google Scholar 

  43. M. D. McKay, R. J. Beckman, W. J. Conover, Technometrics, 21 (1979) 239.

    Google Scholar 

  44. Ch. Ekberg, I. Lunden-Burö, J. Statist. Comput. Simul., 57 (1997) 271.

    Google Scholar 

  45. L. L. Deschenes, G. H. Kramer, K. J. Monserrat, P. A. Robinson, The Potentiometric and Laser Raman Study of the Hydrolysis of Uranyl Chloride under Physiological Conditions and the Effect of Systematic and Random Errors on the Hydrolysis Constants, REPORT AECL-9266, Atomic Energy of Canada Ltd., Chalk River, 1986 p. 23.

    Google Scholar 

  46. M. K. Kotvanova, A. M. Evseev, A. P. Borisova, E. A. Torchienkova, S. V. Zakharov, Moscow Univ. Chem. Bull. (USA) 39 (1984) 37.

    Google Scholar 

  47. G. Meinrath, St. Fischer, K. Köhncke, W. Voigt, to be presented at 2nd Int. Conf. Uranium Mining and Hydrology: Freiberg, September 15–17, 1998.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meinrath, G. Direct spectroscopic speciation of schoepite-aqueous phase equilibria. J Radioanal Nucl Chem 232, 179–190 (1998). https://doi.org/10.1007/BF02383737

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02383737

Keywords

Navigation