Skip to main content
Log in

Competition between reactivity and relaxation in free electron attachment to molecules

A case study in C6F5X (X=F, Cl, Br, I) under different stages of aggregation

  • Proceedings of the PULS'97
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The reactivity of the C6F5X (X=F, Cl, Br, I) molecules following low energy (0–15 eV) electron attachment is studied in the gas phase under single collision conditions, free molecular clusters and condensed molecules by means of crossed beams and surface experiments. All four molecules exhibit a very prominent resonance for low energy electron attachment (<1 eV, attachment cross section >10−14 cm2). Under collision free conditions thermal electron capture generates long lived molecular parent anions C6F5X−*. Along the line Cl, Br, I dissociation into X+C6F5 and X+C6F5-increasingly competes until for X=1 only chemical fragmentation is observed on the mass spectrometric time scale. In free molecular clusters chemical fragmentation is quantitatively quenched at low energies in favour of associative attachment yielding undissociated, relaxed ions (C6F5X) n,n≥1. A further dissociative resonance at 6.5 eV in C6F5Cl is considerably enhanched in clusters. If these molecules are finally condensed on a solid surface, one observes a prominent Cl desorption resonance at 6.5 eV. While the quantitative quenching of the chemical reactivity at low energies is due to the additional possibilities of energy dissipation under aggregation, the enhanched reactivity at 6.5 eV is interpreted by the conversion of a core excited open channel resonance in single molecules into a closed channel (Feshbach) resonance when it is coupled to environmental molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. W. Massey, E. H. S. Bishop, H. B. Gilbody, Electronic and Ionic Impact Phenomena, 2rd Ed., Vol II, Oxford University Pres, London 1969.

    Google Scholar 

  2. T. D. Märk, Ionization of Molecules by Electron Impact, in Ref. 5..

    Google Scholar 

  3. E. C. Zipf, Dissociation of Molecules by Electron Impact, in Ref. 5..

    Google Scholar 

  4. L. G. Christophorou, Atomic and Molecular Radiation Physics, Wiley Interscience, London 1971.

    Google Scholar 

  5. L. G. Christophorou (Ed.), Electron-Molecule Interactions and Their Applications, Vols I and II, Academic Press, Orlando, FL, 1984.

    Google Scholar 

  6. E. Illenberger, J. Momigny, Gas Phase Molecular Ions: An Introduction to Elementary Processes Induced by Ionization, Steinkopff, Darmstadt, Springer, New York 1992.

    Google Scholar 

  7. T. Oster, A. Kühn, E. Illenberger. Intern. J. Mass Spectrom. Ion Proc., 89 (1989) 1.

    CAS  Google Scholar 

  8. O. Ingólfsson, F. Weik, E. Illenberger, Intern. J. Mass Spectrom. Ion Proc., 135 (1996) 1.

    Google Scholar 

  9. H. Shimamori, Y. Tatsumi, T. Sunagawa, J. Chem. Phys., 99 (1993) 7787.

    Article  CAS  Google Scholar 

  10. A. Mann, F. Linder, J. Phys., B 25 (1992) 1621.

    CAS  Google Scholar 

  11. M. Allan, J. Electron Spectrosc. Relat. Phenom., 48 (1989) 219.

    Article  CAS  Google Scholar 

  12. C. R. Herd, N. G. Adams, D. Smith, Intern. J. Mass Spectrom. Ion Proc., 87 (1989) 331.

    CAS  Google Scholar 

  13. W. E. Wentworth, T. Limero, E. C. M. Chen, J. Phys. Chem., 91 (1987) 241.

    Article  CAS  Google Scholar 

  14. C. H. Moore, Atomic Energy Levels, Vol III, United States epartment of Commerce, NSRDS-NBS 35, Washington, DC.

  15. L. Sanche, G. J. Schulz, J. Chem. Phys., 58 (1973) 479.

    Article  CAS  Google Scholar 

  16. J. R. Frazier, L. G. Christophorou, J. G. Carter, H. C. Schweinler, J. Chem. Phys., 69 (1978) 3807.

    Article  CAS  Google Scholar 

  17. O. Ingófsson, E. Illenberger, Intern. J. Mass Spectrom. Ion Proc., 149/50 (1995) 79.

    Google Scholar 

  18. M. B. Robin, Higher Excited States of Polyatomic Molecules, Vol III, Academic Press, Orlando, FL, 1985.

    Google Scholar 

  19. R. P. Frueholz, W. M. Flicker, O. A. Mosher, A. Kuppermann, J. Chem. Phys., 70 (1979) 3059.

    Google Scholar 

  20. P. Tegeder, L. Lehmann, O. Ingólfsson, E. Illenberger, Zeitschr. Phys. Chem., 195 (1996) 217.

    CAS  Google Scholar 

  21. G. W. Dillow, P. Kebarle, J. Am. Chem. Soc., 111 (1989) 5592.

    CAS  Google Scholar 

  22. F. Weik, E. Illenberger, J. Chem. Phys., 103 (1995) 1406.

    Article  CAS  Google Scholar 

  23. T. Oster, O. Ingólfsson, T. Jaffke, M. Meinke, E. Illenberger, J. Chem. Phys., 99 (1993) 5141.

    Article  CAS  Google Scholar 

  24. M. Meinke, L. Parenteau, P. Rowntree, L. Sanche, E. Illenberger, Chem. Phys. Lett., 205 (1993) 21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tegeder, P., Illenberger, E. Competition between reactivity and relaxation in free electron attachment to molecules. J Radioanal Nucl Chem 232, 53–62 (1998). https://doi.org/10.1007/BF02383712

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02383712

Keywords

Navigation