Advertisement

Arkiv för Matematik

, 9:23 | Cite as

On the spectral synthesis problem for (n-l)-dimensional subsets ofR n ,n≥2

  • Yngve Domar
Article

Keywords

Partial Derivative Gaussian Curvature Weak Limit Spectral Synthesis Lebesgue Measurable Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Beurling, A., Sur la composition d'une fonction sommable et d'une fonction bornée.C. R. Acad. Sci. Paris, 225 (1947), 274–275.MATHMathSciNetGoogle Scholar
  2. 2.
    Domar, Y., Sur la synthèse harmonique des courbes deR 2.C. R. Acad. Sci. Paris, 270 (1970), 875–878.MATHMathSciNetGoogle Scholar
  3. 3.
    Herz, C. S., Spectral synthesis for the circle.Ann. Math., 68 (1958), 709–712.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Herz, C. S., The ideal theorem in certain Banach algebras of functions satisfying smoothness conditions.Proc. Conf. Functional Analysis, Irvine, Calif. 1966, London, 1967, 222–234.Google Scholar
  5. 5.
    Littman, W., Fourier transforms of surface-carried measures and differentiability of surface averages.Bull. Amer. Math. Soc., 69 (1963), 766–770.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Pollard, H., The harmonic analysis of bounded functions.Duke Math. J., 20 (1953), 499–512.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Reiter, H.,Classical harmonic analysis and locally compact groups. Oxford, 1968.Google Scholar
  8. 8.
    Schwartz, L.,Théorie des distributions. Tome 1, Paris 1951.Google Scholar
  9. 9.
    ——, Sur une proprété de synthèse spectrale dans les groupes non compacts.C. R. Acad. Sci. Paris, 227 (1948), 424–426.MATHMathSciNetGoogle Scholar
  10. 10.
    Varopoulos, N. Th., Spectral synthesis on spheres.Proc. Cambridge Philos. Soc., 62 (1966), 379–387.MathSciNetCrossRefGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1971

Authors and Affiliations

  • Yngve Domar
    • 1
  1. 1.Department of MathematicsUniversity of UppsalaUppsalaSweden

Personalised recommendations