Advertisement

Arkiv för Matematik

, Volume 43, Issue 1, pp 181–200 | Cite as

Continuity of pluricomplex Green functions with poles along a hypersurface

  • Quang Dieu Nguyen
Article
  • 43 Downloads

Keywords

Green Function Pluricomplex Green Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AW]Alexander, H. andWermer, J.,Several Complex Variables and Banach Algebras, Springer-Verlag, New York, 1998.Google Scholar
  2. [BG]Berenstein, C. A. andGay, R.,Complex Variables. An Introduction, Springer-Verlag, New York, 1991.Google Scholar
  3. [Bi]Bishop, E., Holomorphic completions, analytic continuation, and the interpolation of semi-norms,Ann. of Math. 78 (1963), 468–500.MATHMathSciNetGoogle Scholar
  4. [Br]Bremermann, H. J., On a generalized Dirichlet problem for plurisubharmonic functions and pseudoconvex domains. Characterization of Shilov boundaries,Trans. Amer. Math. Soc. 91 (1959), 246–276.MATHMathSciNetGoogle Scholar
  5. [Co]Coman, D., The pluricomplex Green function with two poles of the unit ball ofC n,Pacific J. Math. 194 (2000), 257–283.MATHMathSciNetGoogle Scholar
  6. [Ka]El Kasimi, A., Approximation polynômiale dans les domaines etoilés deC n,Complex Variables Theory Appl. 10 (1988), 179–182.MathSciNetGoogle Scholar
  7. [FW]Fornæss, J. E. andWiegerinck, J., Approximation of plurisubharmonic functions.Ark. Mat. 27 (1989), 257–272.MathSciNetGoogle Scholar
  8. [Hö]Hörmander, L.,An Introduction to Complex Analysis in Several Variables, 3rd ed., North-Holland, Amsterdam, 1990.Google Scholar
  9. [Ja]Jarnicki, W., Möbius function of coordinates hyperplanes in complex ellipsoids,Proc. Amer. Math. Soc. 132 (2004), 3243–3250.CrossRefMATHMathSciNetGoogle Scholar
  10. [LS1]Lárusson, F. andSigurdsson, R., Plurisubharmonic function and analytic discs on manifolds,J. Reine Angew. Math. 501 (1998), 1–39.MathSciNetGoogle Scholar
  11. [LS2]Lárusson, F. andSigurdsson, R., Plurisubharmonic extremal functions, Lelong numbers and coherent ideal sheaves,Indiana Univ. Math. J. 48 (1999), 1513–1534.MathSciNetGoogle Scholar
  12. [LS3]Lárusson, F. andSigurdsson, R., Erratum: Plurisubharmonic extremal functions, Lelong numbers and coherent ideal sheaves,Indiana Univ. Math. J. 50 (2001), 1705.MathSciNetGoogle Scholar
  13. [Ng]Nguyen, Q. D., Remarks on pluricomplex Green functions with poles along a hypersurface,Research report 21, Mid Sweden University, Sundsvall, 2000.Google Scholar
  14. [Si1]Sibony, N., Prolongement, des fonctions holomorphes bornées et metrique de Carathéodory,Invent. Math. 29 (1975), 205–230.CrossRefMATHMathSciNetGoogle Scholar
  15. [Si2]Sibony, N., Une classe de domaines pseudoconvexes,Duke Math. J. 55 (1987), 299–319.CrossRefMATHMathSciNetGoogle Scholar
  16. [Si3]Sibony, N., Some aspects of weakly pseudoconvex domains, inSeveral Complex Variables and Complex Geometry, Part 1 (Santa Cruz CA, 1989), Proc. Sympos. Pure Math.52, pp. 199–231, Amer. Math. Soc., Providence, RI, 1991.Google Scholar
  17. [Wa]Walsh, J. B., Continuity of envelopes of plurisubharmonic functions,J. Math. Mech. 18 (1968/69), 143–148.Google Scholar
  18. [Wi]Wikström, F., Jensen measures and boundary values of plurisubharmonic functions,Ark. Mat. 39 (2001), 181–200.MATHMathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 2005

Authors and Affiliations

  • Quang Dieu Nguyen
    • 1
  1. 1.Department of MathematicsHanoi University of Education (Dai Hoc Su Pham Hanoi)HanoiVietnam

Personalised recommendations