Skip to main content

Advertisement

Log in

Statistical analysis of age- and sex-related changes of serum osteocalcin

  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

We assayed serum osteocalcin levels in 1366 out-patients by radioimmunoassay and evaluated age- and sex-related changes using the statistical methods. Serum osteocalcin levels of the male and female subjects were recorded in subjects aged 0–20 years at 4-year increments and in subjects older than 20 years at 10-year increments, and submitted to the Hoffmann standardization method. The results were analyzed statistically.

In adults, Scheffe method showed that the serum osteocalcin levels were significantly lower (p<0.01) in women 40–49 years of age and higher (p<0.05) in women 70–79 years of age than in men of the corresponding age groups. Cross-sectional analysis revealed that the serum osteocalcin levels in women increased significantly (p<0.01) in 50–59 years group compared to 40–49 years group coincidentaly to menopause. The Hoffmann method and supplementation by the spline function showed that the peak osteocalcin levels occurred in boys aged 13.2 years (30.5 ng/ml) and in girls aged 9.40 years (33.4 ng/ml). These results suggest that serum osteocalcin is a good marker of bone matabolism reflecting growth in children and menopause in women. Our results were obtained from serum osteocalcin levels in a large population which were strictly analyzed statistically. Therefore, the data in this study, e.g. the normal range or the mean value of serum osteocalcin in any given age and sex, should give us the useful tool for the clinical application of serum osteocalcin as a marker protein of bone metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Hruschka, P.V., Lian, J.B. and Gallop, P.M.: Direct identification of the calcium-binding amino acid, γ-carboxyglutamate, in mineralized tissue. Proc. Natl. Acad. Sci. USA 72: 3925–3929, 1975.

    Google Scholar 

  2. Price, P.A., Otsuka, A.S., Poser, J.W., Kristaponis, J. and Raman, N.: Characterization of a γ-carboxyglutamic acid containing protein from bone. Proc. Natl. Acad. Sci. USA 73: 1447–1451, 1976.

    PubMed  CAS  Google Scholar 

  3. Lian, J.B., Hauschka, P.V. and Gallop, P.M.: Properties and synthesis of a vitamin K-dependent calcium binding protein in bone. Fed. Proc. 37: 2615–2620, 1978.

    PubMed  CAS  Google Scholar 

  4. Nishimoto, S.K. and Price, P.A.: Proof that the γ-carboxyglutamic acid-containing bone protein is synthesized in calf bone. J. Biol. Chem. 254: 437–441, 1979.

    PubMed  CAS  Google Scholar 

  5. Price, P.A., Epstein, D.J., Lothringer, J.W., Nishimoto, S.K., Poser, J.W. and Williamson, M.K.: Structure and function of the vitamin K- dependent protein of bone. In: Vitamin K metabolism and vitamin K-dependent proteins (J.W. Suttie ed.) University Park Press, Baltimore. pp. 219–226. 1980.

    Google Scholar 

  6. Price, P.A. and Nishimoto, S.K.: Radioimmunoassay for the vitamin K-dependent protein of bone and its discovery in plasma. Proc. Natl. Acad. Sci. USA 77: 2234–2238, 1980.

    PubMed  CAS  Google Scholar 

  7. Deftos, L.J., Parthemore, J.G. and Price, P.A.: Changes in plasma bone GLA protein during treatment of bone diseases. Calcif. Tissue Int. 34: 121–124, 1982.

    Article  PubMed  CAS  Google Scholar 

  8. Gundberg, C.M., Lian, J.B., Gallop, P.M. and Steinberg, J.J.: Urinary γ-carboxyglutamic acid and serum osteocalcin as bone markers: studies in osteoporosis and Paget's disease. J. Clin. Endocrinol. Metab. 53: 1221–1225, 1983.

    Google Scholar 

  9. Malluche, H.H., Faugere, M.C., Fanti, P. and Price, P.A.: Plasma levels of bone GLA-protein reflect bone formation in patients on chronic maintenance dialysis. Kidney Int. 26: 869–874, 1984.

    PubMed  CAS  Google Scholar 

  10. Slovik, D.M., Gundberg, C.M., Neer, R.M. and Liann, J.B.: Clinical evaluation of bone turnover by serum osteocalcin measurement in a hospital setting. J. Clin. Endocrinol. Metab. 59: 228–230, 1984.

    PubMed  CAS  Google Scholar 

  11. Brown, J.P., Delmas, P.D., Malavel, L., Edouard, C., Chapuy, M.C. and Meunier, P.J.: Serum bone GLA-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet 19: 1091–1093, 1984.

    Article  Google Scholar 

  12. Price, P.A., Parthemore, J.G., Deftos, L.J. and Nishimoto, S.K.: New biochemical marker for bone metabolism: measurement by radioimmunoassay of bone GLA protein in the plasma of normal subjects and patients with bone disease. J. Clin. Invest. 66: 878–883, 1980.

    PubMed  CAS  Google Scholar 

  13. Price, P.A.: Role of vitamin K-dependent proteins in bone metabolism. Ann. Rev. Nutr. 8: 565–583, 1988.

    Article  CAS  Google Scholar 

  14. Lian, J.B. and Gundberg, C.M.: Osteocalcin: Biochemical considerations and clinical applications. Clin. Orthop. Rel. Res. 226: 267–291, 1988.

    CAS  Google Scholar 

  15. Hauschka, P.V., Lian, J.B., Cole, D.E.C and Gundberg, C.M.: Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol. Rev. 69: 990–1047, 1989.

    PubMed  CAS  Google Scholar 

  16. Delmas, P.D., Stenner, S., Wahner, H.W., Mann, K.G. and Riggs, B.L.: Increase in serum bone γ-carboxyglutamic acid protein with aging in women: implications for the mechanism of age-related bone loss. J. Clin. Invest. 71: 1316–1321, 1983.

    Article  PubMed  CAS  Google Scholar 

  17. Epstein, S., Poser, J., McClintock, R., Johnston, Jr. C.C., Bryce, G. and Hui, S.: Differences in serum bone GLA protein with age and sex. Lancet 11: 307–310, 1984.

    Article  Google Scholar 

  18. Moriuchi, S., Ishiguro, S., Akita, M., Saito, T., Otawara, Y. and Hosoya, N.: Changes in bone γ-carboxyglutamic acid-containing protein in human serum during aging. Vitamins (JAPAN) 57: 311–316, 1983.

    CAS  Google Scholar 

  19. Catherwood, B.D., Marcus, R., Madvig, P. and Cheung, A.K.: Determinants of bone gamma-carboxyglutamic acid-containing protein in plasma of healthy aging subjects. Bone 6: 9–13, 1985.

    Article  PubMed  Google Scholar 

  20. Gundberg, C.M., Iian, J.B. and Gallop, P.M.: Measurement of γ-carboxyglutamate and circulating osteocalcin in normal children and adults. Clin. Chim. Acta 123: 1–8, 1983.

    Article  Google Scholar 

  21. Hauschka, P.V.: Quantitative determination of γ-carboxyglutamic acid in proteins. Anal. Biochem. 80: 212–223, 1977.

    Article  PubMed  CAS  Google Scholar 

  22. Worobec, R.B., Wallace, J.H. and Huggins, C.G.: Angiotensin antibody interaction-1: introduction of the antibody response. Immunochemistry 9: 229–238, 1972.

    Article  PubMed  CAS  Google Scholar 

  23. Hunter, W.M. and Greenwood, F.C.: Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature 5: 495–496, 1962.

    Google Scholar 

  24. Kousaka, T., Yamamuro, T., Kitamura, N., Aoki, J., Uneno, J., Sone, t., Kasai, R. and Yorizuka, T.: Fundamental and clinical evaluation of the osteocalcin RIA kit. Nuclear Medicine (JAPAN) 24: 891–897, 1987.

    CAS  Google Scholar 

  25. Hoffmann, R.G.: New clinical laboratory standardization methods. First ed. Exposition Press, New York. pp. 18–20, 1974.

    Google Scholar 

  26. Snedecor, G.W. and Cochran, W.G.: (1976) Statistical methods. Sixth ed. Iowa State University Press, Iowa. pp. 84–86, 1979.

    Google Scholar 

  27. ibid. pp. 268–271.

    Google Scholar 

  28. Solberg, H.E.: (1986) Establishment and use of reference values. In: Textbook of clinical chemistry (N.W. Tietz ed.) W B Saunders company, Philadelphia. pp. 356–386, 1986.

    Google Scholar 

  29. Gundberg-Carpenter, C., Aronoff, J. and Gallop, P.: The usefulness of serum osteocalcin measurements. In: The chemistry and biology of mineralized tissue (T.B. Butler ed.) Ebsco Media Inc., Birmingham. pp. 411–415, 1984.

    Google Scholar 

  30. Johansen, J., Thomsen, K. and Christiansen, C.: Plasma bone Gla protein concentrations in healthy adults. Dependence on sex, age, and glomerular filtration. Scan. J. Clin. Lab. Invest. 47: 345–350, 1987.

    Article  CAS  Google Scholar 

  31. Cole, D.E.C., Carpenter, T.O. and Gundberg, C.M.: Serum osteocalcin concentrations in children with metabolic bone disease. J. Pediatr 106: 770–776, 1985.

    Article  PubMed  CAS  Google Scholar 

  32. Delmas, P.D., Chatelain, P., Malaval, L. and Bonne, G.: Serum bone GLA-protein in growth hormone deficient children. J. Bone Miner. Res. 1: 333–338, 1986.

    Article  PubMed  CAS  Google Scholar 

  33. Riggs, B.J., Krabbe, S., Christiansen, C., Catherwood, B.D. and Deftos, L.J.: Bone turnover in male puberty: A longitudinal study. Calcif. Tissue Int. 37: 213–217, 1985.

    Google Scholar 

  34. Kruse, K. and Kracht, U.: Evaluation of serum osteocalcin as an index of altered bone metabolism. Eur. J. Pediatr. 145: 27–33, 1986.

    Article  PubMed  CAS  Google Scholar 

  35. Gundberg, C.M., Markowitz, M.E., Mizruchi, M. and Rosen, J.F.: Osteocalcin in human serum: a circadian rhythm. J. Clin. Endocrinol. Metab. 60: 736–739, 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kasai, R., Yamamuro, T., Okumura, H. et al. Statistical analysis of age- and sex-related changes of serum osteocalcin. J Bone Miner Metab 11, 7–16 (1993). https://doi.org/10.1007/BF02383528

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02383528

Key Words

Navigation