Skip to main content
Log in

Vertebral shape, trabecular pattern, and spinal bone mineral density in osteoporosis

  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Vertebral morphometry and trabecular pattern were correlated to the bone mineral density (BMD) of the corresponding vertebra in 82 patients with osteoporosis. With lateral roentgenograms of the lumbar spine, the anterior, middle, and posterior vertebral heights of L2, L3, and L4 were measured, and the wedge index, concavity index, lumbar spine score, and relative central compression were calculated. The trabecular pattern was graded from normal to a disappearance of trabeculae. The BMD of the corresponding vertebrae was measured by dual photon absorptiometry. There were positive correlations between the BMD and the following measurements of biconcavity: the middle height (r=0.182, p=0.0086), concavity index (r=0.202, p=0.0034), lumbar spine score (r=0.147, p=0.0343), and relative central compression (r=0.179, p=0.0099). The trabecular pattern showed a negative correlation with the BMD (r=−0.141, p=0.0428). Although these correlations were statistically significant, the correlation coefficients and the coefficients of determination were small. Therefore, we may be able to use the degree of biconcavity and the trabecular pattern to differentiate severe osteoporosis from mild one, but these parameters are of limited value in the precise assessment of bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold JS: Amount and quality of trabecular bone in osteoporotic vertebral fractures. Clin Endocrinol Metab 2: 221–238, 1973

    Article  CAS  PubMed  Google Scholar 

  2. Urist MR, Gurvey MS, Fareed DO: Long-term observations on aged women with pathologic osteoporosis. In: Barzel US (ed.) Osteoporosis. New York: Grune & Stratton, pp. 3–37, 1970

    Google Scholar 

  3. McBroom RJ, Hayes WC, Edwards WT et al.: Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg 67-A: 1206–1214, 1985

    Google Scholar 

  4. Lindahl O: Mechanical properties of dried defatted spongy bone. Acta Orthop Scand 47: 11–19, 1976

    CAS  PubMed  Google Scholar 

  5. Melton LJ III, Kan SH, Frye MA et al.: Epidemiology of vertebral fractures in women. Am J Epidemiology 129: 1000–1011, 1989

    Google Scholar 

  6. Arnold JS: Focal excessive endosteal resorption in aging and senile osteoporosis. In: Barzel US (ed.) Osteoporosis. New York: Grune & Stratton, pp. 80–100, 1970

    Google Scholar 

  7. Atkinson PJ: Variation in trabecular structure of vertebrae with age. Calcif Tissue Res 1: 24–32, 1967

    Article  CAS  PubMed  Google Scholar 

  8. Caldwell RA, Collins DH: Assessment of vertebral osteoporosis by radiographic and chemical methods postmortem. J Bone Joint Surg 43-B: 346–361, 1961

    Google Scholar 

  9. Itami Y, Ohata Y: Epidemiology and clinical feature of osteoporosis. Nippon Seikeigekagakkai Zasshi 38: 487–489, 1964 (in Japanese)

    Google Scholar 

  10. Nordin BEC: Osteoporosis with particular reference to the menopause. In: Avioli LV (ed.) The Osteoporotic Syndrome: Detection, Prevention, and Treatment. New York: Grune & Stratton, pp. 13–43, 1983

    Google Scholar 

  11. Powell MR, Kolb FO, Genant HK et al.: Comparison of dual photon absorptiometry and quantitative computed tomography of the lumbar spine in the same subjects. In: Frame B, Potts JT (eds.) Clinical Disorders of Bone and Mineral Metabolism. Amsterdam: Excerpta Medica, pp. 58–61, 1983

    Google Scholar 

  12. Reinbold WD, Genant HK, Reiser UJ et al.: Bone mineral content in early-postmenopausal and post-menopausal osteoporotic women: comparison of measurement methods. Radiology 160: 469–478, 1986

    CAS  PubMed  Google Scholar 

  13. Doyle FH, Gutteridge DH, Joplin GF et al.: An assessment of radiological criteria used in the study of spinal osteoporosis. Br J Radiol 40: 241–250, 1967

    CAS  PubMed  Google Scholar 

  14. Ott SM, Kilcoyne RF, Chesnut CH III: Comparisons among methods of measuring bone mass and relationship to severity of vertebral fractures in osteoporosis. J Clin Endocrinol Metab 66: 501–507, 1988

    CAS  PubMed  Google Scholar 

  15. Albright F, Smith PH, Richardson AM: Postmenopausal osteoporosis: its clinical features. JAMA 116: 2465–2474, 1941

    Google Scholar 

  16. Dent RV, Milne MD, Roussak NJ et al.: Abdominal topography in relation to senile osteoporosis of the spine. Br Med J 2: 1082–1084, 1953

    Google Scholar 

  17. Virtama P, Gästrin G, Telkkä A: Biconcavity of the vertebrae as an estimate of their bone density. Clin Radiol 13: 128–131, 1962

    Article  Google Scholar 

  18. Barnett E, Nordin BEC: The radiological diagnosis of osteoporosis: a new approach. Clin Radiol 11: 166–174, 1960

    Article  CAS  PubMed  Google Scholar 

  19. Hangartner TN: The radiologic measurement of bone. J Can Assoc Radiol 37: 143–152, 1986

    CAS  Google Scholar 

  20. Itoi E, Sakurai M, Mizunashi K et al.: Long-term observations of vertebral fractures in spinal osteoporotics. Calcif Tissue Int 47: 202–208, 1990

    CAS  PubMed  Google Scholar 

  21. Smith CB, Smith DA: Relations between age, mineral density and mechanical properties of human femoral compacta. Acta Orthop Scand 47: 496–502, 1976

    CAS  PubMed  Google Scholar 

  22. Parfitt AM: Implications of architecture for the pathogenesis and prevention of vertebral fracture. Bone 13: S41-S47, 1992

    PubMed  Google Scholar 

  23. Tanaka Y, Shiozawa H, Honma T et al.: The influence of trabecular architecture on the compressive strength of vertebral trabecular bone. In: Watanabe M, Yanagisawa M (eds.) Bone Morphometry. Vol. 9, Niigata: Nishimura, pp. 2–9, 1992

    Google Scholar 

  24. Melton LJ III, Chao EYS, Lane J: Biomechanical aspects of fracture. In: Riggs BL, Melton LJ III (eds.) Osteoporosis: Etiology, Diagnosis, and M anagement. New York: Raven Press, pp. 111–131, 1988

    Google Scholar 

  25. Hedlund LR, Gallagher JC, Meeger C et al.: Change in vertebral shape in spinal osteoporosis. Calcif Tissue Int 44: 168–172, 1989

    CAS  PubMed  Google Scholar 

  26. Levine A, Edwards CC: Lumbar Spine trauma. In: Camins MB, O'Leary PF (eds.) The Lumbar Spine. New York: Raven Press, pp. 183–212, 1987

    Google Scholar 

  27. Pødenphant J, Herss Nielsen VA, Riis BJ et al.: Bone mass, bone structure and vertebral fractures in osteoporotic patients. Bone 8: 127–130, 1987

    Article  Google Scholar 

  28. Orimo H: Osteoporosis. Geriatric Medicine 31: 891–898, 1993 (in Japanese)

    Google Scholar 

  29. Ito M, Hayashi K, Yamada M et al.: Vertebral body measurement in the diagnosis of osteoporosis. J Bone Miner Met 11: 123, 1993 (abstract)

    Google Scholar 

  30. Fournier PE, Rizzoli R, Slosman DO et al.: Lumbar spine peak bone mass: relative contribution of vertebral body and posterior arch in females and males. Presented at the Fourth International Symposium on Osteoporosis, Hong Kong, March 27-April 2, 1993

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Itoi, E., Yamada, Y., Kashimoto, O. et al. Vertebral shape, trabecular pattern, and spinal bone mineral density in osteoporosis. J Bone Miner Metab 12 (Suppl 2), 1–6 (1994). https://doi.org/10.1007/BF02383379

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02383379

Key words

Navigation