Skip to main content
Log in

Characterization of vacuum evaporated In - Se thin films

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The InSe films of different thicknesses (290–730 mm) were deposited onto glass substrates under a pressure of 3×10−5 Torr by vacuum evaporation method. The composition (In=53.50%, Se=46.50%) of this film was confirmed using Auger Electron Spectroscopy (AES). Thicknesses of the deposited films have been measured using a Multiple Beam Interferometry. The amorphous nature of the film is confirmed with X-ray diffractogram. From the transmittance spectra in the range of 500 nm-1200 nm, it is observed that the film showed direct allowed transition. Effect of thickness on the optical parameters such as the fundamental band gap, absorption constant, refractive index of InSe thin films are reported. Under low electric field (∼ 1.5×105 Vcm−1), the results of DC conductivity measurements revealed that the variable range hopping is the dominant conduction mechanism. The values of localized states density, localization radius and hopping energy of this film are estimated as 5.57×1020 cm−3eV−1, 0.84 Å and 0.247 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. A. Segura, A. Chevy, J.P. Guesdon, Solar Energy Matter.2, 159, (1979).

    Google Scholar 

  2. M.A. Kenway et al., Thin Solid Films200, 205–210 (1991).

    Google Scholar 

  3. M. Balkanski, P. Gomes, R.F. Wallis, Phys. Stat. Sol. (b)194, 175 (1996).

    CAS  Google Scholar 

  4. S.K. Biswas et al., Phys. Stat. Sol. (a)105, 467, (1988).

    CAS  Google Scholar 

  5. B. Thomas and T.R.N. Kutty, Phys. Stat. Sol. (a)119, 127, (1990).

    CAS  Google Scholar 

  6. A.F. Qasrawi and M. Parlak, J. Materials Science: materials in Electronics12, 473–476 (2001).

    CAS  Google Scholar 

  7. Roughieh Rousina and G.K. Shivakumar, Thin Solid Films16, 175 (1973).

    Google Scholar 

  8. J.C. Manifacier, J. Gasiot, J.P. Fillard, J. Phys E.: Sci. Instrumen.9, 1002 (1976).

    CAS  Google Scholar 

  9. U. Pal, A.K. Chaudhuri, V.V. Rao, H.D. Banerjee, J. Phys. D: Appl. Phys.22, 965 (1989).

    CAS  Google Scholar 

  10. B. Samanta, S.L. Sharma and A.K. Chaudhuri, Indian Journal of Pure and Applied Physics32, 62–67 (1994).

    CAS  Google Scholar 

  11. S.H. Wemble, Physical Review B7, 3767 (1973).

    Google Scholar 

  12. Mott et al, Physical Review97 (6), 1538–1544 (1955).

    Google Scholar 

  13. V. Ambegaokar, B.I. Halperin, J.S. Langer, Phys. Rev.34, 2612 (1972).

    Google Scholar 

  14. A.F. Qasrawi, I. Gunal, C. Ercelebi, Crystal. Res. Technology35 (9), 1077–1086 (2000).

    CAS  Google Scholar 

  15. D. Nataraj, Physical investigation on vacuum evaporated amorphous Sb2−xBixTe3 (x=0.0,0.5 and 1.0) Thin films, Ph.D. Thesis, Bharathiar University, Coimbatore, India, 2001.

    Google Scholar 

  16. C. Wood, L.R. Gilbert, C.M. Garner and C. Shaffer, Proc. 5th Int. Conf. Amorphous and Liquid Semionductors, Taylor and Francis, London, Vol. 1, P. 285, (1974).

    Google Scholar 

  17. A.F. Qasrawi, I. Gunal, C. Ercelebi, Crystal. Res. Technology35 (9), 1077–1086, (2000).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viswanathan, C., Gopal, S., Mangalaraj, D. et al. Characterization of vacuum evaporated In - Se thin films. Ionics 10, 311–316 (2004). https://doi.org/10.1007/BF02382837

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02382837

Keywords

Navigation