Skip to main content
Log in

Photonic crystal devices

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We developed photochemically controlled photonic crystals which may be useful in novel recordable and erasable memories and/or display devices. These materials can operate in the UV, visible or near IR spectral regions. Information is recorded and erased by exciting the photonic crystal with ∼ 360 nm UV light or ∼ 480 nm visible light. The recorded information is read out by measuring the photonic crystal diffraction wavelength. The active element of the device is an azobenzene functionalized hydrogel which contains an embedded crystalline colloidal array. UV excitation forms cis-azobenzene while visible excitation forms trans-azobenzene. Larger dipole moment of the cis-form results in decrease of the free energy of mixing which causes the hydrogel to swell and to red-shift the photonic crystal diffraction with a 36 s time constant. We also observed fast ms and sub-ms transient dynamics associated with convection due to heating of the medium by UV excitation. Convective motion of the medium stretches the PCCA for about 6 µs within which the convection decays and the elastic restoring force of the PCCA brings back the stretched PCCA to its equilibrium state with 33 µs time constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, New York, 1995.

    Google Scholar 

  2. T.F. Krauss and R.M. De La Rue, Prog. Quant. Elect.23, 51 (1999);

    CAS  Google Scholar 

  3. G.A. Azin and S.M. Yang, Adv. Func. Mat.11, 95 (2001);

    Google Scholar 

  4. P. Jiang, G.N. Ostojic, R. Narat, D. Mittleman and V.L. Colvin, Adv. Mat.13, 389 (2001);

    CAS  Google Scholar 

  5. D.J. Norris and Y.A. Vlasov, Adv. Mat.13, 371 (2001).

    Article  CAS  Google Scholar 

  6. S.A. Asher, P.L. Flaugh, G. Washinger, Spectroscopy1, 26 (1986);

    CAS  Google Scholar 

  7. N.A. Clark, A.J. Hurd, B.J. Ackerson, Nature281, 57 (1979);

    Article  CAS  Google Scholar 

  8. R.J. Carlson, S.A. Asher, Appl. Spectrosc.38, 297 (1984);

    Article  CAS  Google Scholar 

  9. C. Reese, S.A. Asher, J. Colloid and Interface Science248, 41 (2002);

    Article  CAS  Google Scholar 

  10. S.A. Asher, US Patents 4 627 689 and 4 632 517, 1986.

  11. J.M. Weissman, H.B. Sunkara, A.S. Tse, S.A. Asher, Science274, 959 (1996);

    Article  CAS  Google Scholar 

  12. J.H. Holtz, S.A. Asher, Nature389, 829 (1997).

    CAS  Google Scholar 

  13. C.E. Reese, C.D. Guerrero, J.M. Weissman, K. Lee, S.A. Asher, J. Colloid and Interface Science232, 76 (2000).

    Article  CAS  Google Scholar 

  14. M. Aslam, A. Dent, Bioconjugation, Grove’s Dictionaries Inc., 1998.

  15. M. Kamenjicki, I.K. Lednev, A. Mikhonin, R. Kesavamoorthy, S.A. Asher, Adv. Funct. Mater.13, 764 (2003).

    Article  Google Scholar 

  16. K. Lee, S.A. Asher, J. Am. Chem. Soc.122, 9534 (2000).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamenjicki, M., Kesavamoorthy, R. & Asher, S.A. Photonic crystal devices. Ionics 10, 233–236 (2004). https://doi.org/10.1007/BF02382822

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02382822

Keywords

Navigation