Ionics

, Volume 10, Issue 3–4, pp 221–225 | Cite as

Nano-composite solid polymer electrolytes for solid state ionic devices

  • M. A. K. Lakshman Dissanayake
Article

Abstract

Recent research efforts to improve the ambient temperature conductivity in polyethylene oxide (PEO) based solid polymer electrolytes have been directed towards the incorporation of ultra-fine nano-sized particles of ceramic fillers such as Al2O3, γ-LiAlO2, SiO2 and TiO2 into the polymer electrolyte. In these PEO based nano-composite polymer electrolytes, conductivity enhancements of up to two orders of magnitude have been achieved. Thermal, electrical conductivity and dielectric relaxation measurements performed on several nano-composite polymer electrolyte systems have shown that the degree of enhancement depends primarily on the grain size. In this paper, results of three nano-composite polymer electrolyte systems, PEO:LiTFSI:Al2O3, PEO:LiTf:Al2O3 and PEO:LiTf: SiO2 are discussed as representative examples. It is suggested that the conductivity enhancement is due to the creation of additional sites and favourable conduction pathways for ionic transport through Lewis acidbase type interactions between the filler surface groups (H/OH) and the ionic species.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.E. Fenton, J.M. Parker, P.V. Wright, Polymer14, 589 (1973).CrossRefGoogle Scholar
  2. [2]
    M.B. Armand, M. Chabagno, M. Duclot, in: Fast Ion Transport in Solids (P. Vashista et al. Eds.) Elsevier, New York, 1979, p. 131.Google Scholar
  3. [3]
    J.R. MacCallum, C.A. Vincent (Eds.), Polymer Electrolyte Reviews, Vol.1, 1987 and Vol.2, 1989, Elsevier, London.Google Scholar
  4. [4]
    F.M. Gray, Polymer Electrolytes, Royal Soc. Chem., Materials Monographs, 1997.Google Scholar
  5. [5]
    B. Scrosati, F. Croce, and L. Persi, J. Electrochem. Soc.147, 1718 (2000).Google Scholar
  6. [6]
    F. Croce, R. Curini, A. Martinelli, L. Persi, F. Ronci, B. Scrosati, and R. Caminiti, J. Phys. Chem. B103, 10632 (1999).CrossRefGoogle Scholar
  7. [7]
    Binod Kumar and L.G. Scanlon, Solid State Ionics124, 239 (1999).CrossRefGoogle Scholar
  8. [8]
    C. Capiglia, P. Mustarelli, E. Quartarone, C. Tomasi, and A. Magistris, Solid State Ionics118, 73 (1999).CrossRefGoogle Scholar
  9. [9]
    M. Marcinek, A. Bac, P. Lipka, A. Zaleska, G. Zukowska, R. Borkowska, and W. Wieczorek, J. Phys. Chem. B104, 11088 (2000).CrossRefGoogle Scholar
  10. [10]
    W. Wieczorek, Z. Florjanczyk and J.R. Stevens, Electrochimica Acta40(13–14), 2251 (1995).Google Scholar
  11. [11]
    P.A.R.D. Jayathilaka, M.A.K.L. Dissanayake, I. Albinsson, and B.-E, Mellander, Electrochimica Acta47, 3257 (2002).CrossRefGoogle Scholar
  12. [12]
    M.A.K.L. Dissanayake, P.A.R.D. Jayathilaka, R.S.P. Bokalawela, I. Albinson, and B.-E. Mellander, Journal of Power Sources119–121, 409 (2003).Google Scholar

Copyright information

© IfI - Institute for Ionics 2004

Authors and Affiliations

  • M. A. K. Lakshman Dissanayake
    • 1
  1. 1.Department of PhysicsUniversity of Peradeniya, Peradeniya, Sri Lanka & Postgraduate Institute of Science (PGIS)PeradeniyaSri Lanka

Personalised recommendations