Skip to main content
Log in

XRD, conductivity and FTIR studies on LiI-Li2WO4-Li3PO4 prepared by low temperature sintering

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Different amounts of Li3PO4 were mixed to a fixed ratio of LiI:Li2WO4, ground and pelletised before subjected to sintering at 70°C for 7 days. XRD shows that the product formed after sintering process is most likely Li6P4W8O32 due to peaks present at 10.6°, 22.4°, 24.0°, 24.4, 26.2°, 32.4° and 34.0°. Conductivity studies show that the sample with 25 wt.% Li3PO4 exhibits the highest room temperature conductivity of 3.42×10−3 Scm−1. Conductivity is expected to occur through channel-like structures which could have formed due to corner or edge sharing of polyhedra. FTIR studies have shown the existence of WO4 tetrahedra and WO6 octahedral at 850 cm−1 and 952 cm−1, and phosphate tetrahedral at 564 cm−1, 700 cm−1, 890 cm−1 and 1030 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hayashi, H. Yamashita, M. Tatsumisago, T. Minami, Solid State Ionics148, 381–389 (2002).

    Article  CAS  Google Scholar 

  2. A. Hayashi, R. Komiya, M. Tatsumisago, T. Minami, in Solid State Ionics136–137, 177–186 (2000).

    Google Scholar 

  3. M. Tatsumigo, K. Hirai, T. Hirata, M. Takahashi, T. Minami, Solid State Ionics86–88, 487–490 (1996).

    Google Scholar 

  4. M. Menetrier, C.E. Stournes, A. Levasseur, Proceedings of the 3rd Asian Conference on Solid State Ionics: Material and applications (1992) 141–145.

  5. H. Wada, M. Menetrier, A. Levasseur, P. Hagenmuller, Mat. Res. Bull.18, 189–193 (1983).

    Article  CAS  Google Scholar 

  6. S. Souto, M. Massot, M. Balkanski, D. Royer, Materials Science and Engineering B64, 33–38 (1999).

    Article  Google Scholar 

  7. T. Shimura, D. Murahashi, H. Iwahara, T. Yogo, in: Solid State Ionics: Trends in the new millennium (B.V.R. Chowdari, Ed.) 2002, p. 613–620.

  8. G. Ardel, D. Golodnitsky, E. Peled, Y. Wang, G. Wang, S. Bajue, S. Greenbaum, Solid State Ionics113–115, 477–485 (1998).

    Google Scholar 

  9. H. Obayashi, A. Gotoh, R. Nagai, Mat. Res. Bull.16, 581 (1981).

    CAS  Google Scholar 

  10. W.O. George and P.S. Mc Intyre, in: Infrared Spectroscopy (D.J. Mowthorpe, Ed.) John Wiley & Sons, 1990.

  11. T. Sekiya, N. Mochida, S. Ogawa, J. Non-Crystalline Solids176, 105–115 (1994).

    Article  CAS  Google Scholar 

  12. E. Cazzanelli, L. Papalino, A. Pennisi, F. Simone, Electrochimica Acta46, 1937–1944 (2001).

    Article  CAS  Google Scholar 

  13. B.V.R. Chowdari, K.L. Tan, L. Fang, Solid State Ionics136–137, 1101–1109 (2000).

    Google Scholar 

  14. R. Gopakrishnan, B.V.R. Chowdari, K.T. Tan, Mat. Res. Bull.26, 1371–1378 (1991).

    Google Scholar 

  15. K. Rissouli, K. Benkhouja, B. Ramos J.R., C. Julien, Materials Science and Engineering B98, 185–189 (2003).

    Article  Google Scholar 

  16. S. Chandra, in: Superionic Solids, North-Holland, Amsterdam, 1981.

    Google Scholar 

  17. J.B. Goodenough and A.K. Shukla, in: Proceeding of Solid States Ionics: Devices (B.V.R. Chowdari and R. Radhakrishna, Eds.) 1988.

  18. N. Imanaka, Y. Kobayashi, S. Tamura, G. Adachi, Solid State Ionics136–137, 319–324 (2000).

    Google Scholar 

  19. M. Hayashi, H. Sakaguchi, S. Takai, T. Esaka, Solid State Ionics140, 71–76 (2001).

    Article  CAS  Google Scholar 

  20. N.M. Sammes, G. Tompsett, Y. Zhang and A. Watanabe, 11th international Conference on Solid State Ionics, Honolulu, (1997) pp. 380, paper D29.

  21. O. Krasovec, A. Surca Vuk, B. Orel, Electrochemica Acta46, 1921–1929 (2001).

    Google Scholar 

  22. R.A. Nuquis and R.O. Kagel, in: Infrared Spectra of Inorganic Compound, Academic Press. Inc., 1971, pp. 339–465.

  23. P. Znasik and M. Mika, Mat. Res. Bull.26, 723–730 (1991).

    CAS  Google Scholar 

  24. J. Swenson, A. Matic, L. Borjesson, W.S. Howells, Solid State Ionics136–137, 1055–1060 (2000).

    Google Scholar 

  25. J.E. Garbarczyk, P. Machowski, M. Wasiucionek, L. Tykarski, R. Bacewicz, A. Aleksiejuk, Solid State Ionics136–137, 1077–1083 (2000).

    Google Scholar 

  26. G. Hirankumar, M. Vijayakumar, S. Selvassekarapandian, in: Solid State Ionics: Trends in the new millennium (B.V.R.. Chowdari et al., Eds.) World Scientific Pub. Co., 2002, p. 605–512.

  27. B. Kim, Y.S. Cho, J.G. Lee, K.H. Joo, K.O. Jung, J. Oh, B. Park, H.J. Sohn, T. Kang, J. Cho, Y.S. Park, J.Y. Oh, J. of Power Sources109, 214–219 (2002).

    CAS  Google Scholar 

  28. R. Mercier, O. Bohnke, C. Bohnke, G. Robert, Mat. Res. Bull.18, 1–7 (1983).

    Article  CAS  Google Scholar 

  29. R. Vijayalaksmi, M. Jayachandran, C. Sanjeeviraja, J. Current Applied Physics3, 171–175 (2003).

    Google Scholar 

  30. B. Orel, U. Opara Krasovec, M. Macek, F. Svagl, U. Llavrencic Stangar, Solar Energy Materials & Solar Cells56, 343–373 (1999).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, A.H., Arof, A.K. XRD, conductivity and FTIR studies on LiI-Li2WO4-Li3PO4 prepared by low temperature sintering. Ionics 10, 200–205 (2004). https://doi.org/10.1007/BF02382817

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02382817

Keywords

Navigation