Advertisement

Primates

, Volume 34, Issue 3, pp 403–411 | Cite as

DNA fingerprinting and the problems of paternity determination in an inbred captive population of guinea baboons (Papio hamadryas papio)

  • Michael W. Bruford
  • Jeanne Altmann
Short Communication Part 2: Ecology, Demography, And Relatedness

Abstract

Multilocus DNA fingerprinting was carried out on 65 individuals from a captive colony of guinea baboons (Papio hamadryas papio) at Brookfield Zoo, in order to determine the allocation of reproductive success among 7 active males. DNA fingerprinting was found to reveal very low levels of genetic variability in the study population, rendering discrimination of different levels of relatedness, and hence paternity, impossible. A method was therefore developed for emphasizing the region of the fingerprint pattern which revealed the greatest level of band variability, and the effect of this experimental modification on band sharing statistics was tested. Band sharing coefficients among unrelated individuals were significantly lower using the modified system, which was then applied to paternity testing in the whole population. However even when using the modified system, of the 33 offspring analyzed only 4 could be assigned solely to 1 male, 14 offspring were assigned to 1 of 2 males, 7 offspring had 3 potential fathers, and the remainder had 4 or more possible fathers. The implications of the limitations of these data for behavioural studies and genetic management of captive populations are discussed.

Key Words

DNA fingerprinting Baboons Inbreeding Paternity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brookfield, J. F. Y., 1989. Analysis of DNA fingerprinting data in cases of disputed paternity.IMA J. Maths Appl. Med. Biol., 6: 111–131.Google Scholar
  2. Bruford, M. W., A. P. Krupa, &T. Burke, 1991. Genetic variability in the Jersey Zoo population of the endangered Mauritius pink pigeon (Nesoenas mayeri). In:Pink Pigeon Population Viability Analysis, Captive Breeding Specialist Group Publication, Apple Valley, Minnesota.Google Scholar
  3. ————,O. Hanotte, J. F. Y. Brookfield, &T. Burke, 1992. Single and multilocus DNA fingerprinting. In:Molecular Genetic Analysis of Populations: A Practical Approach,A. R. Hoelzel (ed.), I. R. L. Press, Oxford, pp. 225–269.Google Scholar
  4. Burke, T. &M. W. Bruford, 1987. DNA fingerprinting in birds.Nature, 327: 149–152.CrossRefPubMedGoogle Scholar
  5. ————,O. Hanotte, M. W. Bruford, &E. Cairns, 1991. Multilocus and single locus minisatellite analysis in population biological studies. In:DNA Fingerprinting: Approaches and Applications,G. Dolf,T. Burke,A. Jeffreys, &R. Wolff (eds.), Birkhäuser Verlag AG, Basel, pp. 154–168.Google Scholar
  6. Faulkes, C. G., D. H. Abbott, &A. L. Mellor, 1990. Investigation of genetic diversity in wild colonies of naked mole-rats (Heterocephalus glaber) by DNA fingerprinting.J. Zool. London, 221: 87–97.Google Scholar
  7. Gilbert, D. A., N. Lehman, S. J. O'Brien, &R. K. Wayne, 1990. Genetic fingerprinting reflects population differentiation in the Californian Channel Island Fox.Nature, 344: 764–767.CrossRefPubMedGoogle Scholar
  8. Hanotte, O., T. Burke, J. A. L. Armour, &A. J. Jeffreys, 1991. Hypervariable minisatellite sequences in the Indian peafowl,Pavo cristatus.Genomics, 9: 587–597.CrossRefPubMedGoogle Scholar
  9. Jeffreys, A. J., J. F. Y. Brookfield, &R. Semeonoff, 1985. Positive identification of an immigration test-case using human DNA fingerprints.Nature, 317: 818–819.CrossRefPubMedGoogle Scholar
  10. ———— &D. B. Morton, 1987. DNA fingerprints of dogs and cats.Anim. Genet., 18: 1–15.PubMedGoogle Scholar
  11. ————,V. Wilson, R. Kelly, B. A. Taylor, &G. Bullfield, 1987. Mouse DNA ‘fingerprints’: analysis of chromosomal localization and germ-line stability of hypervariable loci in recombinant inbred strains.Nucleic Acids Res., 15: 2823–2837.PubMedGoogle Scholar
  12. ————, ————, &S. L. Thein, 1985a. Hypervariable ‘minisatellite’ regions in human DNA.Nature, 314: 67–73.CrossRefPubMedGoogle Scholar
  13. ————, ————, & ————, 1985b. Individual-specific ‘fingerprints’ of human DNA.Nature, 316: 76–79.CrossRefPubMedGoogle Scholar
  14. Kuhnlein, U., D. Zadworny, Y. Dawe, R. W. Fairfull, &J. S. Gavora, 1989. DNA fingerprinting: a tool for determining genetic distances between strains of poultry.Theor. Appl. Genet., 77: 669–672.Google Scholar
  15. ————, ————, ————, ————, & ————, 1990. Assessment of inbreeding by DNA fingerprinting: development of a calibration curve using defined strains of chickens.Genetics, 125: 161–165.PubMedGoogle Scholar
  16. Lacy, R. C. &M. L. Foster, 1988. Determination of pedigrees and taxa of primates by protein electrophoresis.Int. Zoo Yrbk, 27: 159–168.Google Scholar
  17. Lucotte, G., 1979. Génétique des populations, speciation et taxonomic chez les babouins: II Similitudes génétique comparées entre differentes espèces:Papio papio, P. anubis, P. cynocephalus etP. hamadryas basées sur les données du polymorphisme des enzymes erythrocytaires.Biochem. Syst. Ecol., 7: 245–251.Google Scholar
  18. Morin, P. A. &O. Ryder, 1991. Founder contribution and pedigree inference in a captive colony of lion-tailed macaques, using mitochondrial DNA and DNA fingerprinting analyses.Zoo Biol., 10: 341–352.CrossRefGoogle Scholar
  19. Nakamura, Y., M. Leppert, P. O'Connell, R. Wolff, T. Holm, M. Culver, C. Martin, E. Fujimoto, M. Hoff, E. Kumlin, &R. White, 1987. Variable numbers of tandem repeat (VNTR) markers for human gene mapping.Science, 235: 1616–1622.PubMedGoogle Scholar
  20. Packer, C., D. A. Gilbert, A. E. Pussey, &S. J. O'Brien, 1991. A molecular genetic analysis of kinship and cooperation in African lions.Nature, 351: 562–565.CrossRefGoogle Scholar
  21. Reeve, H. K., D. F. Westneat, W. A. Noon, P. W. Sherman, &C. F. Aquadro, 1990. DNA ‘fingerprinting’ reveals high levels of inbreeding in colonies of the eusocial naked mole-rat.Proc. Natl. Acad. Sci. USA, 87: 2496–2500.PubMedGoogle Scholar
  22. Shotake, T., 1981. Population genetical study of natural hybridization betweenPapio anubis andP. hamadryas.Primates, 22: 285–308.Google Scholar
  23. Turner, T. R., M. L. Weiss, &M. E. Pereira, 1992. DNA fingerprinting and paternity assessment in Old World monkeys and ring-tailed lemurs. In:Paternity Testing in Primates: Genetic Tests and Theories,R. D. Martin,A. F. Dixson, &E. J. Wickings (eds.), Karger, Basel, pp. 96–112.Google Scholar
  24. Wayne, R. K., D. A. Gilbert, A. Eisenhawer, N. Lehman, K. Hansen, D. Girman, R. O. Peterson, L. D. Mech, P. J. P. Gogan, U. S. Seal, &R. J. Krumenaker, 1991. Conservation genetics of endangered Isle Royale gray wolf.Cons. Biol., 5: 41–51.Google Scholar
  25. Westneat, D. F., W. A. Noon, H. K. Reeve, &C. F. Aquadro, 1988. Improved hybridization conditions for DNA ‘fingerprints’ probed with M13.Nucleic Acids Res., 16: 4161.PubMedGoogle Scholar
  26. Wickings, E. J., 1993. Hypervariable, multilocus, tandem repeat DNA polymorphisms for genetic fingerprinting of nonhuman primates.Primates, 34: 323–331.Google Scholar
  27. Wyman, A. R. &R. White, 1980. A highly polymorphic locus in human DNA.Proc. Natl. Acad. Sci. USA, 77: 6754–6758.PubMedGoogle Scholar

Copyright information

© Japan Monkey Centre 1993

Authors and Affiliations

  • Michael W. Bruford
    • 1
  • Jeanne Altmann
    • 2
    • 3
  1. 1.Conservation Genetics GroupInstitute of ZoologyLondonEngland
  2. 2.Department of Ecology and EvolutionUniversity of ChicagoChicagoUSA
  3. 3.Department of Conservation BiologyChicago Zoological SocietyBrookfieldUSA

Personalised recommendations