, Volume 25, Issue 3, pp 352–361 | Cite as

The relation of long bone diaphyseal length to chronological age in immature saddle-back tamarins,Saguinus fuscicollis

  • David M. Glassman


Long bone diaphyseal lengths were measured on a cross-sectional sample of 46 immature saddle-back tamarins,Saguinus fuscicollis. All individuals were colony born and ranged in age from 1 to 245 days. Data were collected on each of the three long bone elements of the fore- and hindlimbs. To evaluate the relation of long bone length to chronological age, the data were arranged into age classes corresponding to birth and the median ages of 1, 3, 5 and 7 months. Descriptive statistics were generated for each long bone element for each age-class. Class means and standard errors were plotted. The inferred growth pattern was initially rapid from birth to approximately 3 months followed by a period of deceleration. The pattern was consistent for all long bone elements. By 7 months, diaphyseal lengths approached or exceeded 80% of the adult mean diaphyseal size determined for this species. Further results indicated the absence of any significant sex difference in long bone lengths for any age-class sampled.


Standard Error Growth Pattern Animal Ecology Bone Length Bone Diaphyseal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammons, W. F., L. R. Schectman &R. C. Page, 1972. Host tissue response in chronic periodontal disease. I. The normal periodontium and clinical manifestations of dental and periodontal disease in the marmoset.J. Periodontal Res., 7: 131–143.PubMedGoogle Scholar
  2. Bass, W. M., 1971.Human Osteology: A Laboratory and Field Manual of the Human Skeleton. Missouri Archaeological Society, Columbia.Google Scholar
  3. Brand, H. M. &R. D. Martin, 1983. The relationship between female urinary estrogen excretion and mating behavior in cotton-topped tamarins,Saguinus oedipus oedipus.Int. J. Primatol., 4: 275–290.Google Scholar
  4. Castro, R. &P. Soini, 1978. Field studies onSaguinus mystax and other callitrichids in Amazonian Peru. In:The Biology and Conservation of the Callitrichidae,D. G. Kleiman (ed.), Smithsonian Institution Press, Washington, D.C., pp. 73–78.Google Scholar
  5. Dawson, G. A., 1976. Behavioral ecology of the Panamanian tamarin,Saguinus oedipus (Callitrichidae, Primates). Ph.D. dissertation, Univ. Microfilms, Ann Arbor.Google Scholar
  6. Deinhardt, F., A. W. Holmes, R. B. Capps &H. Popper, 1967. Studies on the transmission of human viral hepatitis to marmoset monkeys. I. Transmission of disease, serial passages, and description of liver lesions.J. Exp. Med., 125: 673–688.CrossRefPubMedGoogle Scholar
  7. ————,L. G. Wolfe, G. H. Theilen &S. P. Snyder, 1970. ST-Feline fibrosarcoma virus: induction of tumors in marmoset monkeys.Science, 167: 881.PubMedGoogle Scholar
  8. ————, ————,R. Northrop, B. Marczynska, J. Ogden, R. McDonald, L. Falk, G. Shramek, R. Smith &J. Deinhardt, 1972. Induction of neoplasms by viruses in marmoset monkeys.J. Med. Primatol., 1: 29–50.PubMedGoogle Scholar
  9. Epple, G. &Y. Katz, 1980. Social influences on first reproductive success and related behaviors in the saddle-back tamarin (Saguinus fuscicollis, Callitrichidae).Int. J. Primatol., 1: 171–183.Google Scholar
  10. Faucheux, B., M. Bertrand &F. Bourliere, 1978. Some effects of living conditions upon the pattern of growth in the stump-tail macaque (Macaca arctoides).Folia Primatol., 30: 220–236.PubMedGoogle Scholar
  11. Fleagle, J. G. &K. W. Samonds, 1975. Physical growth of cebus monkeys (Cebus albifrons) during the first year of life.Growth, 39: 35–52.PubMedGoogle Scholar
  12. Garber, P. A., 1980. Locomotor behavior and feeding ecology of the Panamanian tamarin (Saguinus oedipus geoffroyi, Callitrichidae, Primates).Int. J. Primatol., 1: 185–201.Google Scholar
  13. Gavan, J. A., 1953. Growth and development of the chimpanzee; a longitudinal and comparative study.Human Biol., 25: 93–143.PubMedGoogle Scholar
  14. ————, 1971. Longitudinal, postnatal growth in chimpanzee. In:The Chimpanzee, Vol. 4,G. H. Bourne (ed.), S. Karger, Basel, pp. 46–102.Google Scholar
  15. Gengozian, N., 1969. Marmosets: Their potential in experimental medicine.Ann. N. Y. Acad. Sci., 162: 336–362.PubMedGoogle Scholar
  16. Glassman, D. M., 1983a. Functional implications of skeletal diversity in two South American tamarins.Amer. J. Phys. Anthropol., 61: 291–298.CrossRefGoogle Scholar
  17. ————, 1983b. Growth and development in the saddle-back tamarin: the sequence and timing of dental eruption and epiphyseal union.Amer. J. Primatol., 5: 51–60.CrossRefGoogle Scholar
  18. Ikeda, J. &S. Hayama, 1963. Observations on the growth and development of Japanese monkeys (Macaca fuscata).Primates, 4(2): 90–91.CrossRefGoogle Scholar
  19. Jungers, W. L. &J. G. Fleagle, 1980. Postnatal growth allometry of the extremities inCebus albifrons andCebus apella: a longitudinal and comparative study.Amer. J. Phys. Anthropol., 53: 471–478.CrossRefGoogle Scholar
  20. Kerr, G. R., J. H. Wallace, C. F. Chesney &H. A. Waisman, 1972. Growth and development of the fetal rhesus monkey. III. Maturation and linear growth of the skull and appendicular skeleton.Growth, 36: 59–76.PubMedGoogle Scholar
  21. Leutenegger, W., 1980. Monogamy in callitrichids: a consequence of phyletic dwarfism?Int. J. Primatol., 1: 95–98.Google Scholar
  22. Levy, B. M., A. C. Taylor, S. Hamptom &G. W. Thoma, 1969. Tumors of the marmoset produced by Rous sarcoma virus.Cancer Res., 29: 2237–2248.PubMedGoogle Scholar
  23. Lusted, L. B., R. S. Miller &M. R. Malinow, 1966. Radiographic study of the postnatal skeletal development in howler monkeys (Alouatta caraya).Primates, 7: 263–270.CrossRefGoogle Scholar
  24. Moynihan, M., 1970. Some behavior patterns of platyrrhine monkeys. II.Saguinus geoffroyi and some other tamarins.Smithson. Contrib. Zool., 28: 1–77.Google Scholar
  25. Neyman, P. F., 1978. Aspects of the ecology and social organization of free-ranging cotton-top tamarins (Saguinus oedipus) and the conservation status of the species. In:The Biology and Conservation of the Callitrichidae,D. W. Kleiman (ed.), Smithsonian Institution Press, Washington, D.C., pp. 39–71.Google Scholar
  26. Phillips, I. R., 1976. Skeletal development in the foetal and neonatal marmoset (Callithrix jacchus).Lab. Anim., 10: 317–333.PubMedGoogle Scholar
  27. Rahlmann, D. F. &N. Pace, 1969. Anthropoidimetric and roentgenographic growth changes in young pig-tailed monkeys (Macaca nemestrina). In:Proc. 2nd Int. Congr. Primatol., Atlanta, Georgia, 1968;Recent Advances in Primatology, Vol. 2,H. O. Hofer (ed.), S. Karger, Basel, pp. 171–180.Google Scholar
  28. Reed, O. M. &F. H. Kriewaldt, 1967. Bone dyscrasia in a baboon.J. Amer. Vet. Med. Assoc., 151: 923–925.Google Scholar
  29. Schultz, A. H., 1961. Growth and development. In:The Anatomy of the Rhesus Monkey (Macaca mulatta),C. G. Hartman &W. L. Straus, Jr. (eds.), Hafner Publishing Co., New York, pp. 10–27.Google Scholar
  30. Snow, C. C., 1967. Some observations on the growth and development of the baboon. In:Proc. Int. Symp. on the Baboon and Its Use as an Experimental Animal, San Antonio, Texas, 1965;The Baboon in Medical Research, Vol. 2,H. Vagtborg (ed.), Univ. of Texas Press, Austin, pp. 187–199.Google Scholar
  31. Stein, F. J., J. E. Smallwood, C. H. Tangner, Jr., D. Hightower &G. N. Joiner, 1982. Brief report: A juxtarenal myelolipoma in a cotton-top marmoset (Saguinus oedipus): A case report.Amer. J. Primatol., 2: 215–221.CrossRefGoogle Scholar
  32. Tardif, S. D., 1983. Relationship between social interactions and sexual maturation in femaleSaguinus oedipus oedipus.Folia Primatol., 40: 268–275.PubMedGoogle Scholar
  33. Trotter, M., B. B. Hixon &S. S. Deaton, 1975. Sequential changes in weight of the skeleton and in length of long limb bones ofMacaca mulatta.Amer. J. Phys. Anthropol., 43: 79–91.CrossRefGoogle Scholar
  34. Watts, E. S. &J. A. Gavan, 1982. Postnatal growth of nonhuman primates: The problem of the adolescent spurt.Human Biol., 54: 53–70.PubMedGoogle Scholar

Copyright information

© Japan Monkey Centre 1984

Authors and Affiliations

  • David M. Glassman
    • 1
  1. 1.Behavioral Medicine LaboratorySouthwest Foundation for Biomedical ResearchSan AntonioU.S.A.

Personalised recommendations