Advertisement

Primates

, Volume 29, Issue 1, pp 91–105 | Cite as

Thermal effects on movement patterns of yellow baboons

  • Jeffrey K. Stelzner
Article

Abstract

This paper examines the effect of thermal environment on movement patterns of free-ranging yellow baboons (Papio cynocephalus). For Amboseli baboons, one source of potential thermal stress is intense midday heat, and a plausible thermoregulatory response is for animals to simply move into the shade. I therefore examined the hypothesis that baboons would choose quadrats with higher shade availability (as measured by vegetation cover) in response to increasing midday heat loads (as measured by air temperature and solar radiation).

Surprisingly, this was not the case—neither ambient air temperature, ambient solar radiation, nor quadrat plant species composition had a significant effect on shade availability of quadrat selected. Instead, thermal conditions affected a different aspect of baboon movements; namely, spatial displacement rates. At high air temperatures, baboons as a group traversed woodland habitats more slowly, and bare pans more quickly, than at lower air temperatures. I surmised that this relationship might reflect thermal effects on movement patterns at a smaller scale: if individuals exposed to high heat loads spent more time resting in shade under clumps of vegetation, they would thereby traverse densely-vegetated (hence shaded) quadrats more slowly.

To address this question directly, I obtained focal sample data on activity and microhabitat budgets of individual baboons in relation to environmental temperature. The frequency of most combinations of activity state (e.g., grooming, social behavior) and microenvironment state (e.g., elevation, proximity to vegetation) did not vary monotonically with air temperature. However, baboons in shaded locations (but not those in unshaded locations) spent more time resting and less time moving at high air temperatures than low. In other words, baboon activity budgets depended on both microclimate and microhabitat—animals reduced their activity, particularly movement, when they encountered shade under hot conditions. This pattern of microhabitat choice in turn led to temperature-dependent changes in travel rate at the habitat level.

These observational studies of movement patterns suggest that Amboseli baboons employ opportunistic thermoregulation—they do not seek out densely-shaded habitats or individual patches of shade at high air temperatures. Instead, they respond to environmental heat loads by resting, and thereby slowing down, when they happen to encounter plant shade. Aspects of baboon ecology that favor such an opportunistic mode of thermoregulation include large body size and non-thermal constraints on movement patterns.

Key Words

Behavior Thermoregulation Habitat selection Biometeorology Microclimate Papio Amboseli National Park 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adair, E. R., 1977. Skin, preoptic and core temperatures influence behavioral thermoregulation.J. Appl. Physiol., 42: 559–564.PubMedGoogle Scholar
  2. &B. A. Wright, 1976. Behavioral thermoregulation in the squirrel monkey when response effort is varied.J. Comp. Physiol. Psychol., 90: 179–184.PubMedGoogle Scholar
  3. Alcock, J., 1979.Animal Behavior (2nd ed.). Sinauer, Sunderland, Massachusetts.Google Scholar
  4. Altmann, J., 1974. Observational study of behavior: sampling methods.Behaviour, 49: 227–267.PubMedGoogle Scholar
  5. Altmann, S. A., 1974. Baboons, space, time, and energy.Amer. Zoologist, 14: 221–248.Google Scholar
  6. &J. Altmann, 1970.Baboon Ecology. Univ. of Chicago Press, Chicago.Google Scholar
  7. Anderson, D. J., 1982. Patterns of space utilization. Ph.D. thesis. Univ. of Washington.Google Scholar
  8. Bakken, G. S., 1976. A heat transfer analysis of animals: unifying concepts and the application of metabolism chamber data to field ecology.J. Theor. Biol., 60: 337–384.CrossRefPubMedGoogle Scholar
  9. Bernstein, I. S., 1972. Daily activity cycles and weather influences on a pigtail monkey group.Folia Primatol., 18: 390–415.Google Scholar
  10. , 1975. Activity patterns in a gelada monkey group.Folia Primatol., 23: 50–71.PubMedGoogle Scholar
  11. , 1976. Activity patterns in a sooty mangabey group.Folia Primatol., 26: 185–200.PubMedGoogle Scholar
  12. Cabanac, M., 1975. Temperature regulation.Ann. Rev. Physiol., 37: 415–435.Google Scholar
  13. Campbell, G. S., 1977.An Introduction to Environmental Biophysics. Springer-Verlag, New York.Google Scholar
  14. Chappell, M. A. &G. A. Bartholomew, 1981. Standard operative temperatures and thermal energetics of the antelope ground squirrel (Ammospermophilus leucurus).Physiol. Zool., 54: 81–93.Google Scholar
  15. ,D. L. Goldstein, &D. W. Winkler, 1984. Oxygen consumption, evaporative water loss, and temperature regulation of California gull chicks (Larus californicus) in a desert rookery.Physiol. Zool., 57: 204–214.Google Scholar
  16. Charnov, E., 1976. Optimal foraging, the marginal value theorem.Theor. Pop. Biol., 9: 129–136.CrossRefGoogle Scholar
  17. Clark, P. J. &F. C. Evans, 1954. Distance to the nearest neighbor as a measure of spatial relation-ships in populations.Ecology, 35: 445–453.Google Scholar
  18. Cottam, G &J. T. Curtis, 1956. The use of distance measures in phytosociological sampling.Ecology, 37: 449–460.Google Scholar
  19. Dahl, J. F., I. S. Bernstein, &L. Williams, 1982. Thermoregulation and social structure of a captive group of rhesus macaques.Int. J. Primatol., 3: 273.Google Scholar
  20. &E. O. Smith, 1985. Assessing variation in the social behavior of stumptail macaques using thermal criteria.Amer. J. Phys. Anthropol., 68: 467–477.Google Scholar
  21. Dewoskin, R., 1980. Heat exchange influences on foraging behavior ofZonotrichia flocks.Ecology, 61: 30–36.Google Scholar
  22. Elizondo, R., 1977. Temperature regulation in primates. In:Int. Rev. Physiol. Environ. Physiol. II. Vol. 5,D. Robertshaw (ed.), University Park Press, Baltimore, pp. 71–118.Google Scholar
  23. Folk, B., 1966.An Introduction to Environmental Physiology. Lea & Feabiger, Philadelphia.Google Scholar
  24. Funkhouser, G. E., E. A. Higgins, T. Adam, &C. C. Snow, 1967. The response of the savannah baboon (Papio cynocephalus) to thermal stress.Life Sci. Oxford, 6: 1615–1620.Google Scholar
  25. Gates, D. M., 1980.Biophysical Ecology. Springer-Verlag, New York.Google Scholar
  26. Gates, J. E. &D. M. Harman, 1980. White-tailed deer wintering area in a hemlock-northern hardwood forest.Can. Field-Nat., 94: 259–268.Google Scholar
  27. Grieg-Smith, P., 1965.Quantitative Plant Ecology (2nd ed.). Butterworth & Co., London.Google Scholar
  28. Griffiths, J. W., 1969. Climate. In:East Africa: Its Peoples and Resources,W. T. W. Morgan (ed.), Survey of Kenya, Nairobi, pp. 107–118.Google Scholar
  29. Harding, R. S. O., 1976. Ranging patterns of a troop of baboons (Papio anubis) in Kenya.Folia Primatol., 25: 143–185.PubMedGoogle Scholar
  30. Hausfater, G., 1975.Dominance and Reproduction in Baboons: a Quantitative Analysis. S. Karger, Basel.Google Scholar
  31. Heller, H. C. &D. M. Gates, 1971. Altitudinal zonation of chipmunks (Eutamias): energy budgets.Ecology, 52: 424–433.Google Scholar
  32. Hiley, P. H., 1976. The thermoregulatory responses of the galago (Galago crassicaudatus), the baboon (Papio cynocephalus) and the chimpanzee (Pan satyrus) to heat stress.J. Physiol. (Lond.), 254: 657–671.Google Scholar
  33. Huey, R. B. &M. Slatkin, 1976. Costs and benefits of lizard thermoregulation.Quart. Rev. Biol., 51: 363–384.CrossRefPubMedGoogle Scholar
  34. Ingram, D. L. &K. F. Legge, 1970. The thermoregulatory behavior of young pigs in a natural environment.Physiol. Behav., 5: 981–987.CrossRefPubMedGoogle Scholar
  35. Iwamoto, T. &R. Dunbar, 1983. Thermoregulation, habitat quality and the behavioural ecology in gelada baboons.J. Anim. Ecol., 53: 357–366.Google Scholar
  36. Kelty, M. P. &S. I. Lustick, 1977. Energetics of the starling (Sturnus vulgaris) in a pine woods.Ecology, 58: 1181–1185.Google Scholar
  37. Moen, A. N., 1973.Wildlife Ecology: An Analytical Approach. W. H. Freeman, San Francisco.Google Scholar
  38. Morhardt, S. S. &D. M. Gates, 1974. Energy-exchange analysis of the Belding ground squirrel and its habitat.Ecol. Monogr., 44: 17–44.Google Scholar
  39. Mueller-Dombois, D. &H. Ellenberg, 1974.Aims and Methods of Vegetation Ecology. John Wiley & Sons, New York.Google Scholar
  40. Newman, C. M., E. G. Cummings, J. L. Miller, &H. Wright, 1970. Thermoregulatory responses of baboons exposed to heat stress and scopalamine.Physiologist (Wash.), 13: 271.Google Scholar
  41. Norris, K. S., 1967. Color adaptation in desert reptiles and its thermal relationships. In:Lizard Ecology, a Symposium,W. W. Milstead (ed.), Univ. of Missouri Press, Columbia, Missouri, pp. 162–229.Google Scholar
  42. Phelps, J., 1971. Behavioral thermoregulation in the javelina (Tayassu tajacu). M. S. thesis, Univ. of Arizona.Google Scholar
  43. Porter, W. P. &F. C. James, 1979. Behavioral implications of mechanistic ecology II: the African rainbow lizard,Agama agama.Copeia, 1979: 594–619.Google Scholar
  44. ,J. W. Mitchell, W. A. Beckman, &C. B. Dewitt, 1973. Behavioral implications of mechanistic ecology.Oecologia (Berlin), 13: 1–54.CrossRefGoogle Scholar
  45. ,J. W. Mitchell, W. A. Beckman, &C. B. Dewitt, 1973. Behavioral implications of mechanistic ecology.Oecologia (Berlin), 13: 1–54.CrossRefGoogle Scholar
  46. &C. R. Tracy, 1983. Biophysical analyses of energetics, time-space utilization, and distributional limits of lizards. In:Lizard Ecology: Studies of a Model Vertebrate,R. B. Huey,E. R. Pianka, &T. W. Schoener (eds.), Harvard Univ. Press, Cambridge, Massachusetts, pp. 55–83.Google Scholar
  47. Post, D., 1978. Feeding and ranging behavior of the yellow baboon (Papio cynocephalus). Ph.D. thesis, Yale Univ., New Haven.Google Scholar
  48. ,G. Hausfater, &S. A. McCuskey, 1980. Feeding behavior of yellow baboons (Papio cynocephalus): relationship to age, gender, and dominance rank.Folia Primatol., 34: 170–195.PubMedGoogle Scholar
  49. Russell, E. M., 1971. Changes in behaviour with temperature in the red kangaroo,Megaleia rufa.Aust. J. Zool., 19: 207–213.CrossRefGoogle Scholar
  50. Sharman, M., 1980. Feeding, ranging, and social organization of the Guinea baboon (Papio papio) in Senegal. Ph.D. thesis, Univ. of St. Andrews, Scotland.Google Scholar
  51. Slatkin, M. &G. Hausfater, 1976. A note on the activity of a solitary male baboon.Primates, 17: 311–322.CrossRefGoogle Scholar
  52. Stelzner, J. K., 1987. Thermal environment and behavior of yellow baboons. Ph.D. thesis, Cornell Univ.Google Scholar
  53. &G. Hausfater, 1986. Posture, microclimate, and thermoregulation in yellow baboons.Primates, 17: 449–463.Google Scholar
  54. Stevenson, R. D., 1985. The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms.Amer. Naturalist, 126: 362–386.CrossRefGoogle Scholar
  55. Stolz, L. P. &G. S. Saymann, 1970. Ecology and behavior of baboons in the Northern Transvaal.Ann. Transvaal Mus., 26: 99–143.Google Scholar
  56. Telfer, E. S., 1970. Winter habitat selection by moose and white-tailed deer.J. Wildl. Manag., 34: 553–559.Google Scholar
  57. Tracy, C. R. &K. A. Christian, 1986. Ecological relations among space, time, and thermal niche axes.Ecology, 67: 609–615.Google Scholar
  58. Warde, W. &J. W. Petranka, 1981. A correction factor table for missing point-center quarter data.Ecology, 62: 491–494.Google Scholar
  59. Western, D., 1972. The structure, dynamics, and change of the Amboseli ecosystem. Ph.D. thesis, Univ. of Nairobi.Google Scholar
  60. &C. van Praet, 1973. Cyclical changes in the habitat and climate of an African ecosystem.Nature (Lond.), 241: 104–106.CrossRefGoogle Scholar
  61. Zervanos, S. M. &N. F. Hadley, 1973. Adaptational biology and energy relationships of the collared peccary (Tayassu tajacu).Ecology, 54: 759–774.Google Scholar

Copyright information

© Japan Monkey Centre 1988

Authors and Affiliations

  • Jeffrey K. Stelzner
    • 1
    • 2
  1. 1.Cornell UniversityUSA
  2. 2.Physics Department B-019University of CaliforniaSan Diego, La JollaU.S.A.

Personalised recommendations