Advertisement

Journal of Bone and Mineral Metabolism

, Volume 6, Issue 1, pp 26–31 | Cite as

Localization of alkaline phosphatase in developing bovine dental pulp

  • Hiroshi Ishida
  • Toshihiko Nagata
  • Akihiro Hamasaki
  • Jun-ichi Kido
  • Yoichi Wakano
Original Articles

Abstract

The distribution of alkaline phosphatase in dentinogenically active bovine dental pulp tissues was investigated histochemically and biochemically. Histochemical observation showed a high enzyme activity in the subodontoblastic layer, especially in coronal pulp and also in the core of radicular pulp. Biochemical results were well consistent with histochemical findings. Alkaline phosphatase activity in the coronal pulp was twice that in radicular pulp. Most of the enzyme activity in coronal pulp was in the subodontoblastic layer (91%), whereas the activity in the radicular pulp was evenly distributed. Since undifferentiated mesenchymal cells were observed in the areas showing relatively high ALPase activity, it seemed that there were some relations between the inducion of ALPase and the undifferentiated mesenchymal cells.

Key words

dental pulp alkaline phosphatase dentinogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Tojyo, Y.: A comparison of the alkaline phosphatases of rat dental pulp, bone, kidney, liver and intestine. Archs oral Biol. 28: 103–107, 1983.Google Scholar
  2. 2).
    Granström, G. & Linde, A.: A comparative study of alkaline phosphatase in calcifying cartilage, odontoblasts and the enamel organ. Calcif. Tiss. Res. 22: 231–241, 1977.CrossRefGoogle Scholar
  3. 3).
    Guo, M.K. & Messer, H.H.: A comparison of Ca2+-, Mg2+-ATPase and alkaline phosphatase activities of rat incisor pulp. Calcif. Tiss. Res. 26: 33–38, 1978.CrossRefGoogle Scholar
  4. 4).
    Garba, M.T. & Marie, P.J.: Alkaline phosphatase inhibition by levamisole preventes 1-25-dihydroxyvitamin-D3-stimulated bone mineralization in the mouse. Calcif. Tissue Int. 38: 296–302, 1986.PubMedGoogle Scholar
  5. 5).
    Hakeda, Y., Nakatani, Y., Hiramatsu, M., Kurihara, N., Tsunoi, M., & Kumegawa, M.: Inducive effects of prostaglandins on alkaline phosphatase in osteoblastic cells, clone MC3T3-E1. J. Biochem. 97: 97–104, 1985.PubMedGoogle Scholar
  6. 6).
    Hasselgren, G., Franzen, A., & Hammarstöm, L.E.: Histochemical characterization of alkaline phosphatase in developing rat teeth and bone. Scand J Dent Res 86: 325–336, 1978.PubMedGoogle Scholar
  7. 7).
    Linde, A. & Magnusson, B.C.: Inhibition studies of alkaline phosphtases in hard tissue-forming cells. J. Histochem. Cytochem. 23: 342–347, 1975.PubMedGoogle Scholar
  8. 8).
    Oida, S., Yamashita, Y., & Sasaki, S.: The harvest of homogeneous bovine odontoblasts and their alkaline phosphatase activity. Jpn. J. Oral. Biol. 24: 811–819, 1982.Google Scholar
  9. 9).
    Brown, W.A.B., Christofferson, P.V., Massler, M., & Weiss, M.B.: Postnatal tooth development in cattle. Am. J. Vet. Res. 21: 7–34, 1960.PubMedGoogle Scholar
  10. 10).
    Hayakawa, T., Iijima, K., Hashimoto, Y., Myokei, Y., & Matsui, T.: Developmental changes in the collagen and some collagenolytic activities in bovine dental pulps. Archs oral Biol. 26: 1057–1062, 1981.CrossRefGoogle Scholar
  11. 11).
    Stanley, H.R. & Ranny, R.R.: Age changes in the human dental pulp.(I) The quantity of collagen. Oral Surg. 15: 1396, 1962.PubMedGoogle Scholar
  12. 12).
    Nagata, T., Ishida, H., Kido, J., Hamasaki, A., & Wakano, Y.: Effects of insulin and parathyroid hormone on glycosaminoglycan synthesis of developing bovine dental pulp in culture. JBMM 4: 192–198, 1987.Google Scholar
  13. 13).
    Ten Cate A.R.: The distribution of alkaline phosphase in the human tooth germ. Archs oral Biol. 7: 195–205, 1962.CrossRefGoogle Scholar
  14. 14).
    Linde, A.: A method for the biochmical study of enzymes in the rat odontoblast layer during dentinogenesis. Archs oral Biol. 17: 1209–1212, 1972.CrossRefGoogle Scholar
  15. 15).
    Mayahara, H., Hirano, H., Saito, T., & Ogawa, K.: The new lead citrate method for the ultracytochemical demonstration of activity of non-specific alkaline phosphatase (orthophosphoric monoester phosphohydrolase). Histochemie 11: 88–96, 1967.CrossRefPubMedGoogle Scholar
  16. 16).
    Bessy, O.A., Lowry, O.H., & Brock, M.J.: A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J. Biol. Chem. 164: 321–329, 1946.Google Scholar
  17. 17).
    Smulson, M.H., Maggio, J.D., & Hagen J.C.: Diseases of the pulp and periapex. In: Endodontic therapy (Weine F.S. ed.), 3rd edition, Mosby, St. Luois, pp66–170, 1982.Google Scholar
  18. 18).
    Goggins, J.F. & Fullmer, H.M.: Hydrolytic enzyme histochemistry of the rat molar pulp. Archs oral Biol. 12: 639–644, 1967.CrossRefGoogle Scholar
  19. 19).
    Yoshiki, S. & Kurahashi, Y.: A light and electron microscopic study of alkaline phosphatase activity in the early stage of dentinogenesis in the young rat. Archs oral Biol. 16: 1143–1154, 1971.Google Scholar
  20. 20).
    Seltzer, S. & Bender, I.B.: The pulp as connective tissue. In: The dental pulp, 2nd edition, Lippincott, Philadelphia, pp76–97, 1975.Google Scholar

Copyright information

© Japanese Society of Bone Metabolism Research 1988

Authors and Affiliations

  • Hiroshi Ishida
    • 1
  • Toshihiko Nagata
    • 1
  • Akihiro Hamasaki
    • 1
  • Jun-ichi Kido
    • 1
  • Yoichi Wakano
    • 1
  1. 1.Department of Periodontology and Endodontology, School of DentistryTokushima UniversityTokushimaJapan

Personalised recommendations