Ukrainian Mathematical Journal

, Volume 48, Issue 3, pp 367–376

# Copositive pointwise approximation

• G. A. Dzyubenko
Article

## Abstract

We prove that if a functionfC (1) (I),I: = [−1, 1], changes its signs times (s ∈ ℕ) within the intervalI, then, for everyn > C, whereC is a constant which depends only on the set of points at which the function changes its sign, andk ∈ ℕ, there exists an algebraic polynomialP n =P n (x) of degree ≤n which locally inherits the sign off(x) and satisfies the inequality
$$\left| {f\left( x \right) - P_n \left( x \right)} \right| \leqslant c\left( {s,k} \right)\left( {\frac{1}{{n^2 }} + \frac{{\sqrt {1 - x^2 } }}{n}} \right)\omega _k \left( {f'; \frac{1}{{n^2 }} + \frac{{\sqrt {1 - x^2 } }}{n}} \right), x \in I$$
, where ω k (f′;t) is thekth modulus of continuity of the functionf’. It is also shown that iffC (I) andf(x) ≥ 0,xI then, for anynk − 1, there exists a polynomialP n =P n (x) of degree ≤n such thatP n (x) ≥ 0,xI, and |f(x) −P n (x)| ≤c(k k (f;n −2 +n −1 √1 −x 2),xI.

### Keywords

Polynomial Kernel Pointwise Approximation Algebraic Polynomial Spline Approximation Nonincreasing Function

## Preview

### References

1. 1.
E. Passow and L. Raymon, “Copositive polynomial approximation,”J. Approx. Theory,12, 299–304 (1974).
2. 2.
J. A. Roulier, “The degree of copositive approximation,”J. Approx. Theory,19, 253–258 (1977).
3. 3.
D. Leviatan, “The degree of copositive approximation by polynomials,”Proc. Amer. Math. Soc.,88, 101–105 (1983).
4. 4.
Y. K. Hu, D. Leviatan, and X. M. Yu, “Copositive polynomial approximation in C [-1, 1],”J. Analysis,1, 85–90 (1993).
5. 5.
K. A. Kopotun, “On copositive approximation by algebraic polynomials, ”Anal. Math, (to appear).Google Scholar
6. 6.
Y. K. Hu and X. M. Yu, “The degree and algorithm of copositive approximation,”SIAM Anal. (to appear).Google Scholar
7. 7.
S. P. Zhou, “On copositive approximation,”SIAM Anal. (to appear).Google Scholar
8. 8.
S. P. Zhou, “A counter example in copositive approximation,”Israel J. Math.,78, 75–83 (1992).
9. 9.
X. M. Yu, “Degree of copositive polynomial approximation,”Chin. Ann. Math.,10, 409–415 (1989).
10. 10.
Y. K. Hu, D. Leviatan, and X. M. Yu, “Copositive polynomial and spline approximation,”J. Approx. Theory,80, 204–218 (1995).
11. 11.
A. G. Dzyubenko, J. Gilewicz, and I. A. Shevchuk,Piecewise Monotone Pointwise Approximation, Preprint CPT-94/P. 3121, CNRS Lumini, Marseilles (1994).Google Scholar
12. 12.
I. A. Shevchuk,Polynomial Approximation and Traces of Functions Continuous on an Interval [in Russian], Naukova Durnka, Kiev 1992.Google Scholar
13. 13.
V. K. Dzyadyk, “On constructive description of the functions satisfying the condition [Lip α, (0 < α < 1)] on a finite segment of the real axis,”Izv. Akad. Nauk SSSR, Ser. Mat.,20, No. 2, 623–642 (1956).