Ukrainian Mathematical Journal

, Volume 48, Issue 3, pp 367–376 | Cite as

Copositive pointwise approximation

  • G. A. Dzyubenko


We prove that if a functionfC (1) (I),I: = [−1, 1], changes its signs times (s ∈ ℕ) within the intervalI, then, for everyn > C, whereC is a constant which depends only on the set of points at which the function changes its sign, andk ∈ ℕ, there exists an algebraic polynomialP n =P n (x) of degree ≤n which locally inherits the sign off(x) and satisfies the inequality
$$\left| {f\left( x \right) - P_n \left( x \right)} \right| \leqslant c\left( {s,k} \right)\left( {\frac{1}{{n^2 }} + \frac{{\sqrt {1 - x^2 } }}{n}} \right)\omega _k \left( {f'; \frac{1}{{n^2 }} + \frac{{\sqrt {1 - x^2 } }}{n}} \right), x \in I$$
, where ω k (f′;t) is thekth modulus of continuity of the functionf’. It is also shown that iffC (I) andf(x) ≥ 0,xI then, for anynk − 1, there exists a polynomialP n =P n (x) of degree ≤n such thatP n (x) ≥ 0,xI, and |f(x) −P n (x)| ≤c(k k (f;n −2 +n −1 √1 −x 2),xI.


Polynomial Kernel Pointwise Approximation Algebraic Polynomial Spline Approximation Nonincreasing Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Passow and L. Raymon, “Copositive polynomial approximation,”J. Approx. Theory,12, 299–304 (1974).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J. A. Roulier, “The degree of copositive approximation,”J. Approx. Theory,19, 253–258 (1977).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    D. Leviatan, “The degree of copositive approximation by polynomials,”Proc. Amer. Math. Soc.,88, 101–105 (1983).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Y. K. Hu, D. Leviatan, and X. M. Yu, “Copositive polynomial approximation in C [-1, 1],”J. Analysis,1, 85–90 (1993).MATHMathSciNetGoogle Scholar
  5. 5.
    K. A. Kopotun, “On copositive approximation by algebraic polynomials, ”Anal. Math, (to appear).Google Scholar
  6. 6.
    Y. K. Hu and X. M. Yu, “The degree and algorithm of copositive approximation,”SIAM Anal. (to appear).Google Scholar
  7. 7.
    S. P. Zhou, “On copositive approximation,”SIAM Anal. (to appear).Google Scholar
  8. 8.
    S. P. Zhou, “A counter example in copositive approximation,”Israel J. Math.,78, 75–83 (1992).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    X. M. Yu, “Degree of copositive polynomial approximation,”Chin. Ann. Math.,10, 409–415 (1989).MATHGoogle Scholar
  10. 10.
    Y. K. Hu, D. Leviatan, and X. M. Yu, “Copositive polynomial and spline approximation,”J. Approx. Theory,80, 204–218 (1995).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. G. Dzyubenko, J. Gilewicz, and I. A. Shevchuk,Piecewise Monotone Pointwise Approximation, Preprint CPT-94/P. 3121, CNRS Lumini, Marseilles (1994).Google Scholar
  12. 12.
    I. A. Shevchuk,Polynomial Approximation and Traces of Functions Continuous on an Interval [in Russian], Naukova Durnka, Kiev 1992.Google Scholar
  13. 13.
    V. K. Dzyadyk, “On constructive description of the functions satisfying the condition [Lip α, (0 < α < 1)] on a finite segment of the real axis,”Izv. Akad. Nauk SSSR, Ser. Mat.,20, No. 2, 623–642 (1956).MathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • G. A. Dzyubenko

There are no affiliations available

Personalised recommendations