Ionics

, Volume 10, Issue 5–6, pp 334–342 | Cite as

Electronic and ionic conductivity in CaTiO3

  • T. Bak
  • J. Nowotny
  • C. C. Sorrell
  • M. F. Zhou
Article

Abstract

The present work describes the electrical conductivity of undoped CaTiO3 in terms of the electrical conductivity components corresponding to electrons, electron holes and ionic charge carriers in the temperature range 973 K — 1323 K and under controlled oxygen partial pressure (10 Pa — 72 kPa). These data are considered in terms of the transference numbers of the respective charge carriers. It appears that the ionic conductivity component assumes maximum at the n-p transition when the ionic transfer number reaches 50% of the total conductivity value at 1323 K. The present study also includes the determination of the activation energy of the conductivity component related to ions (162.1 kJ/mol), electrons (134.2 kJ/mol) and electron holes (86.2 kJ/mol). The data obtained in this work indicate that undoped CaTiO3 exhibits a substantial level of ionic conduction that cannot be ignored in a quantitative analysis of electrical conductivity data.

Keywords

Activation Energy Electrical Conductivity Charge Carrier Ionic Conductivity Oxygen Partial Pressure 

Nomenclature

e

Elementary charge [1.602×10−19 C]

k

Boltzmann constant [8.6167×10−5 eV·K−1, 1.3807×10−23 J·K−1]

m

Parameter related to defect disorder

n

Concentration of electrons [m−3]

N

Density of states [m−3]

p

Concentration of electron holes [m−3]

p(O2)

Oxygen activity [Pa]

S

Thermpower [V·K−1]

t

Transference number

T

Absolute temperature [K]

μ

Mobility [m2·V−1·s−1]

σ

Electrical conductivity [ω−1·m−1]

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. [1]
    L.L. Hench, J.K. West, in: Principles of Electronic Ceramics, Wiley, New York, 1990, pp. 187, 237.Google Scholar
  2. [2]
    J. Nowotny, M. Rekas, in: Electronic Ceramic Materials (J. Nowotny, Ed.) Trans. Tech. Publ., Zurich, 1992, pp. 89–92.Google Scholar
  3. [3]
    H. Iwahara, T. Esaka, T. Managahara, J. Appl. Electrochem.18, 173 (1988).CrossRefGoogle Scholar
  4. [4]
    T. Takahashi, H. Iwahara, T. Ichimura, Denki Kagaku37, 857 (1969).Google Scholar
  5. [5]
    L.A. Dunyushkina, A.K. Demin, B.O. Zhuravlev, 11th Intern. Conf. Solid State Ionics, Honolulu, Hawaii, USA, 1997, Extended Abstracts, p. 274.Google Scholar
  6. [6]
    S. Xie, W. Liu, K. Wu, O.H. Yang, G.Y. Meng, C.S. Chen, Solid State Ionics118, 23 (1999).CrossRefGoogle Scholar
  7. [7]
    W.L. George, R.E. Grace, J. Phys. Chem. Solids30, 881–87 (1969).Google Scholar
  8. [8]
    W.L. George, R.E. Grace, J. Phys. Chem. Solids30, 889–92 (1969).Google Scholar
  9. [9]
    U. Balachandran, B. Odekrik, N.G. Eror, J. Solid State Chem.41, 185 (1982).CrossRefGoogle Scholar
  10. [10]
    M.F. Zhou, T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, E.R. Vance, J. Mater. Sci.: Mater. in Electronics13, 697 (2002).Google Scholar
  11. [11]
    J. Nowotny, M. Rekas, H-I. Yoo, in: Ceramic Interfaces, (R.St.C. Smart, J. Nowotny, Eds.) Institute of Materials, London, 1998, pp. 283–94.Google Scholar
  12. [12]
    J. Nowotny, M. Radecka, M. Rekas, S. Sugihara, E.R. Vance, W. Weppner, Ceram. Intern.24, 571 (1998).Google Scholar
  13. [13]
    T. Bak, J. Nowotny, C.C. Sorrell, M.F. Zhou, Part I, J. Mater. Sci., Materials for Electronics, in print.Google Scholar
  14. [14]
    P. Kofstad, Nonstoichiometry, Diffusion and Electrical Conductivity of Binary Metal Oxides, Wiley, New York, 1972.Google Scholar
  15. [15]
    J.H. Becker, H.P.R. Frederikse, J. Appl. Phys.33, 447 (1962).CrossRefGoogle Scholar
  16. [16]
    A. Linz, K. Harrington, J. Chem. Phys.28, 824 (1988).Google Scholar
  17. [17]
    G.A. Cox, R.H. Tredgold, Brit. J. Appl. Phys.18, 37 (1967).CrossRefGoogle Scholar
  18. [18]
    N.I. Budim, M.S. Kozyreva, Izv. Acad. Nauk SSSR, Neorg. Mater.7, 1451 (1971).Google Scholar
  19. [19]
    A.A. Bolkov, H.I. Golcov, S.M. Emielianov, S.M. Maksimov, Y.M. Popov, O.I. Prokopalo, I.P. Paiebskii, V.I. Siervuli, Rep. of Rostov (Don) University, 1981, p. 1.Google Scholar

Copyright information

© IfI - Institute for Ionics 2004

Authors and Affiliations

  • T. Bak
    • 1
  • J. Nowotny
    • 1
  • C. C. Sorrell
    • 1
  • M. F. Zhou
    • 1
  1. 1.Centre for Materials Research in Energy Conversion School of Materials Science and EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations