Advertisement

Ionics

, Volume 8, Issue 1–2, pp 136–141 | Cite as

Kinetics of the O2, Pt/YSZ interface at moderate temperature in the presence of C3H8 in the gas phase

  • L. Bultel
  • M. Hénault
  • C. Roux
  • E. Siebert
  • B. Béguin
  • F. Gaillard
  • M. Primet
  • P. Vernoux
Article

Abstract

The catalytic activity of polycrystalline Pt deposited on Yttria Stabilized Zirconia (YSZ) for the oxidation of propane to CO2 can be affected using the effect of Non-faradaic Electrochemical Modification of Catalytic Activity (NEMCA). It was found that by applying positive overpotentials and thus, supplying O2- onto catalyst surface, up to 3.2-fold increase in the catalytic rate of C3H8 oxidation could be obtained at 365 °C. At 305 °C, no effect was evidenced. Using cyclic voltammetry and impedance spectroscopy, we have shown the modifications induced by the addition of C3H8 on the kinetics of the 02, Pt/YSZ interface in the temperature range 300–400 °C. A decrease of the coverage of adsorbed oxygen species produced electrochemically was evidenced as well as a decrease of the oxygen electrode reaction rate under anodic potential.

Keywords

Catalytic Activity C3H8 Cyclic Voltammetry Yttria Impedance Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C.G. Vayenas, S. Bebelis, S. Ladas, Nature343, 625 (1990).CrossRefGoogle Scholar
  2. [2]
    C.G. Vayenas, S. Bebelis, I.V. Yentekakis, H.-G. Lintz, Catal. Today11, 303 (1992).CrossRefGoogle Scholar
  3. [3]
    C.G. Vayenas, M.M. Jaksic, S. Bebelis, S.G. Neophytides, in: Modern Aspects of Electrochemistry (J.O.M. Bockris, B.E. Conway and R.E. White, Eds.) Plenum Press, New York, 1996, Vol. 29, p. 57.Google Scholar
  4. [4]
    I.S. Metcalfe, J. Catal.199, 247 (2001).Google Scholar
  5. [5]
    R. Imbihl, J. Janek, Solid State Ionics136–137, 699 (2000).Google Scholar
  6. [6]
    A.D. Frantzis, S. Bebelis, C.G. Vayenas, Solid State Ionics136–137, 863 (2000).Google Scholar
  7. [7]
    F. Gaillard, M. Primet, P. Vernoux, L. Bultel, C. Roux, E. Siebert, J. Catal., to be published.Google Scholar
  8. [8]
    L. Bay, T. Jacobson, Solid State Ionics93, 201 (1997).CrossRefGoogle Scholar
  9. [9]
    C.G. Vayenas, I.V. Yentekakis in: Handbook of Catalysis (G. Erth, H. Knotzinger and J. Weitcamp, Eds.) VCH Publishers, Weinheim, 1997, p. 1310.Google Scholar
  10. [10]
    M. W. Breiter, K. Leeb, G. Fafilek, J. electroanal. Chem.434, 129 (1997).CrossRefGoogle Scholar
  11. [11]
    T. Chao, K.J. Walsh, P.S. Fedkiw, Solid State Ionics47, 67 (1991).Google Scholar
  12. [12]
    T. Kenjo, Y. Yamakoshi and K. Wada, J. Electrochem. Soc.140, 2151 (1993).Google Scholar
  13. [13]
    C.G. Vayenas, A. Ionnides and S. Bebelis, J. Catal.129, 67 (1991).CrossRefGoogle Scholar
  14. [14]
    C. Wagner, Adv. Catal.21, 323 (1970).Google Scholar
  15. [15]
    F. van Heuveln, H. Bouwmeester, J. Electrochem. Soc.144, 134 (1997).Google Scholar

Copyright information

© IfI - Institute for Ionics 2002

Authors and Affiliations

  • L. Bultel
    • 1
  • M. Hénault
    • 1
  • C. Roux
    • 1
  • E. Siebert
    • 1
  • B. Béguin
    • 2
  • F. Gaillard
    • 2
  • M. Primet
    • 2
  • P. Vernoux
    • 2
  1. 1.Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces (LEPMI)UMR 5631 CNRSSaint Martin d'Hères cedexFrance
  2. 2.Laboratoire d'Application de la Chimie à l'Environnement (LACE), UMR 5634 CNRSUniversité Claude Bernard Lyon 1Villeurbanne cedexFrance

Personalised recommendations