Ionics

, Volume 8, Issue 1–2, pp 136–141 | Cite as

Kinetics of the O2, Pt/YSZ interface at moderate temperature in the presence of C3H8 in the gas phase

  • L. Bultel
  • M. Hénault
  • C. Roux
  • E. Siebert
  • B. Béguin
  • F. Gaillard
  • M. Primet
  • P. Vernoux
Article

Abstract

The catalytic activity of polycrystalline Pt deposited on Yttria Stabilized Zirconia (YSZ) for the oxidation of propane to CO2 can be affected using the effect of Non-faradaic Electrochemical Modification of Catalytic Activity (NEMCA). It was found that by applying positive overpotentials and thus, supplying O2- onto catalyst surface, up to 3.2-fold increase in the catalytic rate of C3H8 oxidation could be obtained at 365 °C. At 305 °C, no effect was evidenced. Using cyclic voltammetry and impedance spectroscopy, we have shown the modifications induced by the addition of C3H8 on the kinetics of the 02, Pt/YSZ interface in the temperature range 300–400 °C. A decrease of the coverage of adsorbed oxygen species produced electrochemically was evidenced as well as a decrease of the oxygen electrode reaction rate under anodic potential.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C.G. Vayenas, S. Bebelis, S. Ladas, Nature343, 625 (1990).CrossRefGoogle Scholar
  2. [2]
    C.G. Vayenas, S. Bebelis, I.V. Yentekakis, H.-G. Lintz, Catal. Today11, 303 (1992).CrossRefGoogle Scholar
  3. [3]
    C.G. Vayenas, M.M. Jaksic, S. Bebelis, S.G. Neophytides, in: Modern Aspects of Electrochemistry (J.O.M. Bockris, B.E. Conway and R.E. White, Eds.) Plenum Press, New York, 1996, Vol. 29, p. 57.Google Scholar
  4. [4]
    I.S. Metcalfe, J. Catal.199, 247 (2001).Google Scholar
  5. [5]
    R. Imbihl, J. Janek, Solid State Ionics136–137, 699 (2000).Google Scholar
  6. [6]
    A.D. Frantzis, S. Bebelis, C.G. Vayenas, Solid State Ionics136–137, 863 (2000).Google Scholar
  7. [7]
    F. Gaillard, M. Primet, P. Vernoux, L. Bultel, C. Roux, E. Siebert, J. Catal., to be published.Google Scholar
  8. [8]
    L. Bay, T. Jacobson, Solid State Ionics93, 201 (1997).CrossRefGoogle Scholar
  9. [9]
    C.G. Vayenas, I.V. Yentekakis in: Handbook of Catalysis (G. Erth, H. Knotzinger and J. Weitcamp, Eds.) VCH Publishers, Weinheim, 1997, p. 1310.Google Scholar
  10. [10]
    M. W. Breiter, K. Leeb, G. Fafilek, J. electroanal. Chem.434, 129 (1997).CrossRefGoogle Scholar
  11. [11]
    T. Chao, K.J. Walsh, P.S. Fedkiw, Solid State Ionics47, 67 (1991).Google Scholar
  12. [12]
    T. Kenjo, Y. Yamakoshi and K. Wada, J. Electrochem. Soc.140, 2151 (1993).Google Scholar
  13. [13]
    C.G. Vayenas, A. Ionnides and S. Bebelis, J. Catal.129, 67 (1991).CrossRefGoogle Scholar
  14. [14]
    C. Wagner, Adv. Catal.21, 323 (1970).Google Scholar
  15. [15]
    F. van Heuveln, H. Bouwmeester, J. Electrochem. Soc.144, 134 (1997).Google Scholar

Copyright information

© IfI - Institute for Ionics 2002

Authors and Affiliations

  • L. Bultel
    • 1
  • M. Hénault
    • 1
  • C. Roux
    • 1
  • E. Siebert
    • 1
  • B. Béguin
    • 2
  • F. Gaillard
    • 2
  • M. Primet
    • 2
  • P. Vernoux
    • 2
  1. 1.Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces (LEPMI)UMR 5631 CNRSSaint Martin d'Hères cedexFrance
  2. 2.Laboratoire d'Application de la Chimie à l'Environnement (LACE), UMR 5634 CNRSUniversité Claude Bernard Lyon 1Villeurbanne cedexFrance

Personalised recommendations