Ionics

, Volume 8, Issue 1–2, pp 128–135 | Cite as

Electrochemical promotion of NO reduction by propene on Pt/YSZ

  • B. Béguin
  • F. Gaillard
  • M. Primet
  • P. Vernoux
  • L. Bultel
  • M. Hénault
  • C. Roux
  • E. Siebert
Article

Abstract

The reduction of NO by C3H6 in the presence of oxygen, is of great environmental importance. Platinum-based catalysts are very active but not selective towards N2 production and mainly convert NO into N2O, which participates to the greenhouse effect. Moreover, their operating temperature window is quite narrow. Electrochemical promotion was used to improve platinum catalytic behaviour. Platinum was deposited on YSZ (Y2O3 — stabilised ZrO2), an O2-conductor. It was found that a negative current increased the rate of NO reduction and CO2 formation. This rate enhancement was non-Faradaic with an apparent Faradaic efficiency (Λ) close to 180 indicating the manifestation of a NEMCA effect. However, the current application had no effect on the N2 selectivity

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V.I. Pârvulescu, P. Grange and B. Delmon, Catal. Today46, 233 (1998).CrossRefGoogle Scholar
  2. [2]
    J.R. Hardree and J.W. Hightower, J. Catal.86, 137 (1984).Google Scholar
  3. [3]
    R. Burch and P.J. Milligton, Catal. Today26, 185 (1995).Google Scholar
  4. [4]
    C.G. Vayenas, S. Bebelis and S. Ladas, Nature343, 625 (1990).CrossRefGoogle Scholar
  5. [5]
    C.G. Vayenas, S. Bebelis, I.V. Yentekakis and H.-G. Lintz, Catal. Today11, 303 (1992).CrossRefGoogle Scholar
  6. [6]
    C.G. Vayenas, M.M. Jaksic, S. Bebelis and S.G. Neophytides, in: Modern Aspects of Electrochemistry (J.O.M. Bockris, B.E. Conway, R.E. White, Eds.), Plenum Press, New York,29, 1995, p. 57.Google Scholar
  7. [7]
    S. Ladas, S. Kennou, S. Bebelis and C.G. Vayenas, J. Phys. Chem.97, 8845 (1993).CrossRefGoogle Scholar
  8. [8]
    Y. Jiang, I.V. Yentekakis and C.G. Vayenas, J. Catal.148, 240 (1994).CrossRefGoogle Scholar
  9. [9]
    A. Kaloyannis and C.G. Vayenas, J. Catal.182, 37 (1999).CrossRefGoogle Scholar
  10. [10]
    M. Makri, C.G. Vayenas, S. Bebelis, K.H. Besocke and C. Cavalca, Surf. Sci.369, 351 (1996).CrossRefGoogle Scholar
  11. [11]
    A.D. Frantzis, S. Bebelis and C.G. Vayenas, Solid State Ionics136–137, 863 (2000).Google Scholar
  12. [12]
    J. Nicole, D. Tsiplakides, S. Wodiunig and C. Comminellis, J. Electrochem. Soc.144, 1312 (1997).Google Scholar
  13. [13]
    D. Tsiplakides and C.G. Vayenas, J. Electrochem. Soc.148(5), E189 (2001).Google Scholar
  14. [14]
    R.M. Lambert, M. Tikhov, A. Palermo, I.V. Yentekakis and C.G. Vayenas, Ionics1, 366 (1995).CrossRefGoogle Scholar
  15. [15]
    I.V. Yentekakis, M. Konsolakis, R.M. Lambert, A. Palermo and M. Tikhov, Solid State Ionics136–137, 783 (2000).Google Scholar
  16. [16]
    R.M. Lambert, A. Palermo, F.J. Williams and M. Tikhov, Solid State Ionics,136–137, 677 (2000).Google Scholar
  17. [17]
    A. Palermo, M. Tikhov, N. Filkin, R.M. Lambert, I.V. Yentekakis and C.G. Vayenas, in: Proceedings of the 11th International Congress on Catalysis (J.W. Hightower, W.N. Delgass, E. Iglesia and A.T. Bell, Eds.) Stud. Surf. Sci. and Catal.101, 1996, p. 513.Google Scholar
  18. [18]
    R.M. Lambert, I.R. Harkness, I.V. Yentekakis and C.G. Vayenas, Ionics1, 29 (1995).CrossRefGoogle Scholar
  19. [19]
    M. Marwood and C.G. Vayenas, J. Catal.170, 275 (1997).CrossRefGoogle Scholar
  20. [20]
    O.A. Marina, I.V. Yentekakis, C.G. Vayenas, A. Palermo and R.M. Lambert, J. Catal.166, 218 (1997).CrossRefGoogle Scholar
  21. [21]
    C. Pliangos, C. Raptis, Th. Badas, D. Tsiplakides and C.G. Vayenas, Electrochim. Acta46, 331 (2000).CrossRefGoogle Scholar
  22. [22]
    C. Pliangos, C. Raptis, Th. Badas, and C.G. Vayenas, Solid State Ionics136–137, 767 (2000).Google Scholar
  23. [23]
    P. Vernoux, F. Gaillard, L. Bultel, E. Siebert and M. Primet, submitted to J. Catal.Google Scholar
  24. [24]
    A. Obuchi, A. Ohi, M. Nakamura, A. Ogata, K. Mizuno and H. Ohuchi, Appl. Catal. B2, 71 (1993).Google Scholar
  25. [25]
    R. Burch and T.C. Watling, Stud. Surf. Sci. and Catal.116, 199 (1998).Google Scholar
  26. [26]
    F. Jayat, C. Lembacher, U. Schubert and J.A. Martens, Appl. Catal. B21, 221 (1999).Google Scholar
  27. [27]
    R. Burch and D. Ottery, Appl. Catal. B13, 105 (1997).Google Scholar
  28. [28]
    A. Kaloyannis and C.G. Vayenas, J. Catal.182, 37 (1999).CrossRefGoogle Scholar
  29. [29]
    R. Burch, D.J. Crittle and M.J. Hayes, Catal. Today47, 229 (1999).CrossRefGoogle Scholar
  30. [30]
    R. Burch and T.C. Watling, Catal. Today43, 19 (1997).Google Scholar
  31. [31]
    M. Konsolakis, N. Macleod, J. Isaac, I.V. Yentekakis and R.M. Lambert, J. Catal.193, 330 (2000).CrossRefGoogle Scholar
  32. [32]
    C.G. Vayenas and D. Tsiplakides, Surf. Sci.467, 23 (2000).CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 2002

Authors and Affiliations

  • B. Béguin
    • 1
  • F. Gaillard
    • 1
  • M. Primet
    • 1
  • P. Vernoux
    • 1
  • L. Bultel
    • 2
  • M. Hénault
    • 2
  • C. Roux
    • 2
  • E. Siebert
    • 2
  1. 1.Laboratoire d'Application de la Chimie à l'Environnement (LACE), UMR 5634 CNRSUniversité Claude Bernard Lyon 1Villeurbanne cedexFrance
  2. 2.Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces (LEPMI)UMR 5631 CNRSSaint Martin d'Hères cedexFrance

Personalised recommendations