, Volume 9, Issue 5–6, pp 370–374 | Cite as

On the use of multichannel data acquisition of impedance spectra

  • J. C. C. Abrantes
  • D. Pérez-Coll
  • P. Núñez
  • J. R. Frade


Impedance spectroscopy is a powerful technique for electrical and electrochemical characterisation of ionic conductors and other electroceramics. Thus, one might tempted to use multichannel data acquisition to allow the utilisation of expensive LCR meters for simultaneous measurements. This work shows results for YSZ and strontium titanate ceramics, obtained with a multi-channel data acquisition system, to demonstrate the limitations of this approach and the applicability of some corrections. Impedance spectra are affected under multi-channel conditions, mainly in the high frequency contributions, and this is approximately described by a stray capacitance. The bulk contribution of the spectra is most affected. Contributions of internal interfaces (e.g. grain boundaries) are relatively well characterised, mainly after the proposed corrections. The characterisation of electrode processes is not affected.


Strontium Ionic Conductor Impedance Spectroscopy Data Acquisition System Impedance Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.E. Bauerle, J. Phys. Chem. Sol.30, 2657 (1969).Google Scholar
  2. [2]
    M. Vollman, R. Hagenbeck, R. Waser, J. Amer. Ceram. Soc.80, 2301 (1997).Google Scholar
  3. [3]
    I. Denk, J. Claus, J. Maier, J. Electrochem. Soc.144, 3526 (1997).Google Scholar
  4. [4]
    J.C.C. Abrantes, J.A. Labrincha, J.R. Frade, J. Eur. Ceram. Soc.20, 603 (2000).CrossRefGoogle Scholar
  5. [5]
    F.D. Morrison, D.C. Sinclair, A.R. West, J. Amer. Ceram. Soc.84, 531 (2001).Google Scholar
  6. [6]
    M.J. Verkerk, B.J. Middelhius, A.J. Burggraff, Solid State Ionics6, 159 (1982).CrossRefGoogle Scholar
  7. [7]
    M.M.R. Boutz, C.S. Chen, L. Winnubst, A.J. Burggraff, J. Amer. Ceram. Soc.77, 2632 (1994).CrossRefGoogle Scholar
  8. [8]
    G.M. Christie, F.O.P.F. van Berkel, Solid State Ionics83, 17 (1996).CrossRefGoogle Scholar
  9. [9]
    H.S. Isaacs, L.J. Olmer, J. Electrochem. Soc.129, 436 (1982).Google Scholar
  10. [10]
    S. Primdhal, M. Mogensen, J. Electrochem. Soc.144, 3409 (1997).Google Scholar
  11. [11]
    A. Ringuedé, D. Bronine, J.R. Frade, Solid State Ionics146, 219 (2002).Google Scholar
  12. [12]
    B. Boukamp, Solid State Ionics20, 31 (1986).CrossRefGoogle Scholar
  13. [13]
    D.C. Sinclair, A.R. West, J. Appl. Phys.66, 3850 (1989).CrossRefGoogle Scholar
  14. [14]
    J.C.C. Abrantes, J.A. Labrincha, J.R. Frade, Mat. Res. Bull.35, 955 (2000).Google Scholar
  15. [15]
    J.C.C. Abrantes, J.A. Labrincha, J.R. Frade, Mat. Res. Bull.35, 965 (2000).Google Scholar
  16. [16]
    A.J. Feighery, J.C.C. Abrantes, J.A. Labrincha, J.M.F. Ferreira, J.R. Frade, Sensors and Actuators B75, 88 (2001).Google Scholar
  17. [17]
    Hewlett-Packard, Application Note 346-3.Google Scholar
  18. [18]
    E. Chinarro, J.R. Jurado, F.M. Figueiredo, J.R. Frade, Solid State Ionics160, 161 (2003).CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 2003

Authors and Affiliations

  • J. C. C. Abrantes
    • 1
  • D. Pérez-Coll
    • 2
  • P. Núñez
    • 2
  • J. R. Frade
    • 3
  1. 1.ESTG, Instituto Politécnico de Viana do CasteloViana do CasteloPortugal
  2. 2.Dep. Química InorgánicaUniversidad de La LagunaLa Laguna, TenerifeSpain
  3. 3.Ceramics and Glass Engineering Dep. (CICECO)University of AveiroAveiroPortugal

Personalised recommendations