Advertisement

Ionics

, Volume 9, Issue 1–2, pp 47–55 | Cite as

Structural and electrochemical properties of LiCoO2 and LiAlyCo1−yO2 (y=0.1 and 0.2) oxides: A comparative study of electrodes prepared by the citrate precursor route

  • N. Amdouni
  • H. Zarrouk
  • C. M. Julien
Article

Abstract

We present the characterization and electrode behavior of LiCoO2 and Al-doped LiAlyCo1−yO2 (y=0.1 and 0.2) oxides prepared by wet-chemical method from the citrate precursor route. We study the phase evolution as a function of the aluminum substitution and the modification on the intercalation and deintercalation of Li ions. Characterization methods include XRD, SEM, and FTIR. X-ray diffraction patterns show that samples belong to the LiCoO2-LiAlO2 solid solution and have the layered α-NaFeO2 structure. FT-infrared vibrational spectroscopy indicates the slight modification in the local structure related to the short-range environment of oxygen coordination around the cations in oxide lattices. The frequencies and relative intensities of the bands are sensitive to the covalency of the (Al, Co)O2 slabs. The overall electrochemical capacity of the LiAlyCo1−yO2 oxides have been reduced due to the sp metal substitution, however, a more stable charge-discharge cycling performances have been observed when electrodes are charged to 4.3 V as compared to the performances of the native oxide. Differences and similarities between LiCoO2 and Al-substituted oxides are discussed therefrom.

Keywords

Electrochemical Property Cycling Performance Native Oxide Characterization Method Vibrational Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Julien and G.A. Nazri, Materials for Solid State Batteries, Kluwer Publ., Boston (1994).Google Scholar
  2. [2]
    K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Mater. Res. Bull.15, 783 (1980).CrossRefGoogle Scholar
  3. [3]
    J.N. Reimers, J.R. Dahn, J. Electrochem. Soc.139, 2091 (1992).Google Scholar
  4. [4]
    T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori, Electrochim. Acta38, 1159 (1993).CrossRefGoogle Scholar
  5. [5]
    C. Delmas, I. Saadoune, Solid State Ionics53–56, 370 (1992).Google Scholar
  6. [6]
    T. Ohzuku, T. Yanagawa, M. Kouguchi, A. Ueda, J. Power Sources68, 131 (1997).Google Scholar
  7. [7]
    G.A. Nazri, A. Rougier, K.F. Kia, Mater. Res. Soc. Symp. Proc.453, 635 (1997).Google Scholar
  8. [8]
    M.K. Aydinol, A. Van der Ven, G. Ceder, Mater. Res. Soc. Symp. Proc.496, 65 (1998).Google Scholar
  9. [9]
    H. Huang, G.V.S. Rao, B.V.R. Chowdari, J. Power Sources82, 690 (1999).Google Scholar
  10. [10]
    Y.I. Jang, B. Huang, H. Wang, D.R. Sadoway, G. Ceder, Y.M. Chiang, H. Liu, H. Tamura, J. Electrochem. Soc.146, 862 (1999).Google Scholar
  11. [11]
    H. Wang, Y.I. Jang, B. Huang, D.R. Sadoway, Y.M. Chiang, J. Power Sources81–82, 594 (1999).Google Scholar
  12. [12]
    Y.I. Jang, B. Huang, H. Wang, G.R. Maskaly, G. Ceder, D.R. Sadoway, Y.M. Chiang, H. Liu, H. Tamura, J. Power Sources81–82, 589 (1999).Google Scholar
  13. [13]
    J.M. McGraw, C.S. Bahn, P.A. Parilla, J.D. Perkins, D.W. Readey, D.S. Ginley, Electrochim. Acta45, 187 (1999).CrossRefGoogle Scholar
  14. [14]
    C. Julien, G.A. Nazri, A. Rougier, Solid State Ionics135, 121 (2000).Google Scholar
  15. [15]
    S.T. Myung, N. Kumagai, S. Komaba, H.T. Chung, Solid State Ionics139, 47 (2001).CrossRefGoogle Scholar
  16. [16]
    W.S. Yoon, K.K. Lee, K.B. Kim, J. Electrochem. Soc.147, 2023 (2000).Google Scholar
  17. [17]
    W.S. Yoon, K.K. Lee, K.B. Kim, J. Electrochem. Soc.149, A146 (2002).Google Scholar
  18. [18]
    M. Oku, J. Solid State Chem.23, 177 (1978).CrossRefGoogle Scholar
  19. [19]
    G. Ceder, M.K. Aydinol, A.F. Kohan, Comput. Mater. Sci.8, 161 (1997).CrossRefGoogle Scholar
  20. [20]
    C. Julien, L. El-Farh, S. Rangan, M. Massot, J. Sol-Gel Sci. & Technol.15, 63 (1999).Google Scholar
  21. [21]
    C. Julien, M.S. Michael, S. Ziolkiewicz, Intl. J. Inorg. Mater.1, 29 (1999).Google Scholar
  22. [22]
    C. Julien, Ionics6, 30 (2000).Google Scholar
  23. [23]
    H.J. Orman, P.J. Wiseman, Acta Crystallogr.C40, 12 (1984).Google Scholar
  24. [24]
    J. Morales, C. Péres-Vicente, J.L. Tirado, Mat. Res. Bull.25, 623 (1990).CrossRefGoogle Scholar
  25. [25]
    C. Julien, Solid State Ionics136–137, 887 (2000).Google Scholar
  26. [26]
    R.K. Moore, W.B. White, J. Am. Ceram. Soc.53, 679 (1970).Google Scholar
  27. [27]
    C. Julien, NATO Science Series3–85, 309 (2000).Google Scholar
  28. [28]
    T. Ohzuku, K. Nakura, T. Aoki, Electrochim. Acta45, 151 (1999).CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 2003

Authors and Affiliations

  • N. Amdouni
    • 1
  • H. Zarrouk
    • 1
  • C. M. Julien
    • 2
  1. 1.Laboratoire de Chimie des Matériaux, Faculté des Sciences de TunisUniversité de Tunis El ManarEl Manar IITunisia
  2. 2.Laboratoire des Milieux Désordonnés et Hétérogènes, CNRS-UMR7603Université Pierre et Marie CurieParis cedex 05France

Personalised recommendations